/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mk_trace.h" #include "mk_clock.h" #include "mk_uwb.h" #include "mk_calib.h" #include "mk_misc.h" #include "ranging_custom.h" #include "lib_aoa.h" #include "lib_ranging.h" #if KF_EN #include "lib_kf.h" #endif #if PDOA_3D_EN #include "lib_pdoa_3d.h" #endif #include "board.h" #define PRINT_PAYLOAD_EN 0 #define PRINT_PDOA_IQ_EN 0 #ifdef SE_DEMO_EN uint8_t master_apdu_send_status; uint8_t slave_apdu_resp_send_status; extern void master_process_apdu(const uint8_t *ptr, uint16_t rx_len_tmp); extern void slave_process_apdu(const uint8_t *ptr, uint16_t rx_len_tmp, uint8_t ack); #endif #if FILTER_EN static void ranging_result_filter(uint16_t *distance, int16_t *azimuth, int16_t *elevation) { if ((distance == NULL) || (azimuth == NULL) || (elevation == NULL)) { return; } #if KF_EN float post_range, post_azimuth, post_elevation; float azimuth_meas = mk_q7_to_f32(*azimuth); float elevation_meas = mk_q7_to_f32(*elevation); float range_meas = (float)*distance / 100; // call filter uint16_t target_addr = uwbs_peer_short_addr_get(); uint8_t mac_addr[8]; memset(mac_addr, 0, 8); mac_addr[0] = target_addr & 0xff; mac_addr[1] = (target_addr >> 8) & 0xff; loc_kf_filter(range_meas, KF_DATA_TYPE_RANGING, mac_addr, &post_range); if (uwb_app_config.session_param.aoa_result_req) { loc_kf_filter(azimuth_meas, KF_DATA_TYPE_AZIMUTH, mac_addr, &post_azimuth); loc_kf_filter(elevation_meas, KF_DATA_TYPE_ELEVATION, mac_addr, &post_elevation); } else { post_azimuth = azimuth_meas; post_elevation = elevation_meas; } // update distance *distance = (uint16_t)(post_range * 100); // update angle *azimuth = mk_f32_to_q7(post_azimuth); *elevation = mk_f32_to_q7(post_elevation); // LOG_INFO(TRACE_MODULE_APP, "$%u %u %d %d %d %d;\r\n", (uint16_t)(range_meas*100),(uint16_t)(post_range*100),(int16_t)azimuth_meas,(int16_t)post_azimuth, // (int16_t)elevation_meas, (int16_t)post_elevation); #else float post_range, post_azimuth; int azimuth_meas = mk_q7_to_s16(*azimuth); float range_meas = (float)*distance; // call filter loc_post_filter(0, range_meas, azimuth_meas, &post_range, &post_azimuth); // update distance *distance = (uint16_t)(post_range); // update angle *azimuth = mk_f32_to_q7(post_azimuth); // LOG_INFO(TRACE_MODULE_APP, "$%u %u %d %d;\r\n", (uint16_t)(range_meas*100), (uint16_t)(post_range*100),(int16_t)azimuth_meas, (int16_t)post_azimuth); #endif } #endif /*************************************************************************************************/ /*! * \brief WSF event handler for ranging task. * * \param event WSF event mask. * \param msg WSF message. * * \return None. */ /*************************************************************************************************/ void ranging_handler(wsfEventMask_t event, const void *param) { const wsfMsgHdr_t *msg = (const wsfMsgHdr_t *)param; if (msg != NULL) { switch (msg->event) { case RANGING_DAEMON_TIMER_MSG: { uint8_t count = ranging_count_get(); if (count == ranging_env.count_last) { LOG_INFO(TRACE_MODULE_APP, "Ranging was suspended %u\r\n", count); ranging_restart(); } else { // LOG_INFO(TRACE_MODULE_APP, "Ranging count %u %u\r\n", ranging_env.count_last, count); ranging_env.count_last = count; } } break; case UWB_PKT_TX_DONE_MSG: { const struct UWB_PKT_TX_DONE_IND_T *ind = (const struct UWB_PKT_TX_DONE_IND_T *)param; if (ind->ranging_stage == RANGING_POLL) { uint16_t seq_num = READ_SHORT(&ind->tx_data[2]); #ifdef SE_DEMO_EN if (ind->tx_len > (MSG_HEADER_LEN + MSG_POLL_USER_DATA_IDX)) { master_apdu_send_status = 1; } #endif LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n"); if (uwb_app_config.ranging_flow_mode == (uint8_t)RANGING_FLOW_CONTENTION) { LOG_INFO(TRACE_MODULE_APP, "Custom DS-TWR Contention Initiator SEQ NUM %u\r\n", seq_num); } else { LOG_INFO(TRACE_MODULE_APP, "Custom DS-TWR Initiator SEQ NUM %u\r\n", seq_num); } LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Poll %s\r\n", ind->tx_len, ind->status == UWB_TX_OK ? "" : "TX Fail"); } else if (ind->ranging_stage == RANGING_RESPONSE) { #ifdef SE_DEMO_EN if (ind->tx_len > (MSG_HEADER_LEN + MSG_RESPONSE_USER_DATA_IDX)) { slave_apdu_resp_send_status = 1; } #endif LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Response %s\r\n", ind->tx_len, ind->status == UWB_TX_OK ? "" : "TX Fail"); } else if (ind->ranging_stage == RANGING_FINAL) { LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Final\r\n", ind->tx_len); // calculate_first_tap_power(1, 1); // print_preamble_chest(1, 1); // print_sts_ch_taps(1); } else if (ind->ranging_stage == RANGING_RESULT) { LOG_INFO(TRACE_MODULE_APP, "[TX][%u] Result\r\n", ind->tx_len); } #if PRINT_PAYLOAD_EN if (ind->tx_len) { LOG_INFO(TRACE_MODULE_APP, " "); for (uint8_t i = 0; i < ind->tx_len; i++) { LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "%02x ", ind->tx_data[i]); } LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n"); } #endif } break; case UWB_PKT_RX_DONE_MSG: { const struct UWB_PKT_RX_DONE_IND_T *ind = (const struct UWB_PKT_RX_DONE_IND_T *)param; if (ind->status == UWB_RX_OK) { const struct RANGING_USER_PKT_T *usr_pkt = (const struct RANGING_USER_PKT_T *)ind->rx_data; if ((ind->ranging_stage == RANGING_POLL) && ranging_env.synced) { ranging_env.range_data.sequence_num = usr_pkt->seq_num; LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n"); if (uwb_app_config.ranging_flow_mode == (uint8_t)RANGING_FLOW_CONTENTION) { LOG_INFO(TRACE_MODULE_APP, "Custom DS-TWR Contention Responder SEQ NUM %u\r\n", ranging_env.range_data.sequence_num); } else { LOG_INFO(TRACE_MODULE_APP, "Custom DS-TWR Responder SEQ NUM %u\r\n", ranging_env.range_data.sequence_num); } LOG_INFO(TRACE_MODULE_APP, "[RX][%u][%d] Poll\r\n", ind->rx_len, ranging_env.main_ant_id); // LOG_INFO(TRACE_MODULE_APP, "[RX]Peer Tx Power Level %d\r\n", usr_pkt->msg.poll_msg[MSG_POLL_TX_PWR_IDX]); int32_t freq_offset = phy_freq_offset_get(); int32_t freq_offset_filter = average_filter(freq_offset); LOG_INFO(TRACE_MODULE_APP, "CH Freq Offset %d\r\n", freq_offset_filter); #if XTAL_AUTO_TUNE_EN int32_t ppm = freq_offset_filter / (int32_t)(ch_center_freq_map[uwb_app_config.ppdu_params.ch_num] * 1e-6); calib_xtal38m4_load_cap_auto_tune(ppm); #endif #if USER_DEFINED_DATA_REPORT_EN uint8_t user_data_len = (uint8_t)(ind->rx_len - MSG_HEADER_LEN - MSG_POLL_USER_DATA_IDX); if (user_data_len) { uwbapi_report_user_defined_data(user_data_len, &usr_pkt->msg.poll_msg[MSG_POLL_USER_DATA_IDX]); } #endif #ifdef SE_DEMO_EN uint8_t se_poll_data_len = (uint8_t)(ind->rx_len - MSG_HEADER_LEN - MSG_POLL_USER_DATA_IDX); if (se_poll_data_len) { slave_process_apdu(&usr_pkt->msg.poll_msg[MSG_POLL_USER_DATA_IDX], se_poll_data_len, 0); } #endif #if RSSI_EN LOG_INFO(TRACE_MODULE_APP, "RSSI: %ddBm, SNR: %ddB \r\n", ind->rssi, ind->snr); #endif #if CSI_EN struct RANGING_TAPS_INF_T taps_inf; ranging_taps_inf_get(&taps_inf); ranging_env.frame[0].NLoS = taps_inf.NLoS; ranging_env.frame[0].fom = taps_inf.FoM; LOG_INFO(TRACE_MODULE_APP, "NLoS %u FoM %u\r\n", taps_inf.NLoS, taps_inf.FoM); #else ranging_fom_get(&ranging_env.frame[0].NLoS, &ranging_env.frame[0].fom); #endif } else if (ind->ranging_stage == RANGING_RESPONSE) { uint16_t responder_addr = READ_SHORT(&usr_pkt->msg.response_msg[MSG_RESPONSE_RESPONDER_ID_IDX]); uint8_t responder_idx = ranging_responder_idx_get(responder_addr); LOG_INFO(TRACE_MODULE_APP, "[RX][%u] Response\r\n", ind->rx_len); // LOG_INFO(TRACE_MODULE_APP, "[RX]Peer Tx Power Level %d\r\n", usr_pkt->msg.response_msg[MSG_RESPONSE_TX_PWR_IDX]); #ifdef SE_DEMO_EN uint8_t se_resp_data_len = (uint8_t)(ind->rx_len - MSG_HEADER_LEN - MSG_RESPONSE_USER_DATA_IDX); // Must call master_process_apdu when se_data_len == 0 master_process_apdu(&usr_pkt->msg.response_msg[MSG_RESPONSE_USER_DATA_IDX], se_resp_data_len); #endif #if RSSI_EN LOG_INFO(TRACE_MODULE_APP, "RSSI: %ddBm, SNR: %ddB\r\n", ind->rssi, ind->snr); #endif #if CSI_EN struct RANGING_TAPS_INF_T taps_inf; ranging_taps_inf_get(&taps_inf); ranging_env.frame[responder_idx].NLoS = taps_inf.NLoS; ranging_env.frame[responder_idx].fom = taps_inf.FoM; LOG_INFO(TRACE_MODULE_APP, "NLoS %u FoM %u\r\n", taps_inf.NLoS, taps_inf.FoM); #else ranging_fom_get(&ranging_env.frame[responder_idx].NLoS, &ranging_env.frame[responder_idx].fom); #endif } else if (ind->ranging_stage == RANGING_FINAL) { LOG_INFO(TRACE_MODULE_APP, "[RX][%u][%d] Final\r\n", ind->rx_len, ranging_env.main_ant_id); int64_t Tround1 = 0; int64_t Tround2 = 0; int64_t Treply1 = 0; int64_t Treply2 = 0; if (ranging_env.responder_final_flag) { Tround2 = ranging_tround(DEV_ROLE_RESPONDER, 0); Treply1 = ranging_treply(DEV_ROLE_RESPONDER, 0); // Ttotal for (int i = 4; i >= 0; i--) { Treply2 = (Treply2 << 8) | usr_pkt->msg.final_msg[MSG_FINAL_TREPLY_IDX + i]; } // Tround1 for (int i = 4; i >= 0; i--) { Tround1 = (Tround1 << 8) | usr_pkt->msg.final_msg[MSG_FINAL_TROUND_IDX(ranging_env.responder_slot_idx) + i]; } // Treply2 Treply2 = Treply2 - Tround1; } // LOG_INFO(TRACE_MODULE_APP, "Tround1 %u Treply1 %u Tround2 %u Treply2 %u\r\n", (uint32_t)Tround1, (uint32_t)Treply1, // (uint32_t)Tround2, (uint32_t)Treply2); if ((Tround1) && (Treply1) && (Tround2) && (Treply2)) { int64_t tof_i = (Tround1 * Tround2 - Treply1 * Treply2) / (Tround1 + Tround2 + Treply1 + Treply2); // outlier filter if (tof_i < 0) { tof_i = 0; } ranging_env.tof = (uint32_t)tof_i; double tof_f = (double)TIMESTAMP_UNIT_TO_NS(ranging_env.tof); uint32_t distance = (uint32_t)(tof_f * 0.299702547 * VP_VAL - RANGING_CORR); // update distance result struct RANGING_MEASUREMENT_T *range_result = &ranging_env.range_data.measurements[0]; range_result->status = STATUS_OK; range_result->distance = (uint16_t)distance; if (uwb_app_config.session_param.aoa_result_req) { #if AOA_EN // update PDoA IQ and calculate AoA angles (depends on aoa_aux_cfg) aoa_calculate(&range_result->aoa_elevation, &range_result->aoa_azimuth); aoa_fom_get(&range_result->aoa_elevation_fom, &range_result->aoa_azimuth_fom); #elif PDOA_3D_EN // calculate PDoA angles pdoa_3d_calculate(range_result->mac_addr, &range_result->aoa_elevation, &range_result->aoa_azimuth); pdoa_fom_get(&range_result->aoa_elevation_fom, &range_result->aoa_azimuth_fom); #endif #if PRINT_PDOA_IQ_EN #if AOA_EN || PDOA_3D_EN float *iq = sts_first_path_iq_get(); #else float *iq = NULL; pdoa_iq_get(&iq); #endif ////////// need to increase slot duration for log printing if (RX_ANT_PORTS_NUM == 2) { LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[0], iq[1]); LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[2], iq[3]); } else if (RX_ANT_PORTS_NUM == 3) { LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[0], iq[1]); LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[2], iq[3]); LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[4], iq[5]); } else if (RX_ANT_PORTS_NUM == 4) { LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[0], iq[1]); LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[2], iq[3]); LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[4], iq[5]); LOG_INFO(TRACE_MODULE_APP, "ANT IQ: %f %f\r\n", iq[6], iq[7]); } // float pdoa[3]; // pdoa[0] = pdoa_select_get(0, 3); // pdoa[1] = pdoa_select_get(1, 3); // pdoa[2] = pdoa_select_get(2, 3); // LOG_INFO(TRACE_MODULE_APP, "PDOA: %f %f %f\r\n", pdoa[0], pdoa[1], pdoa[2]); // float *sts_rssi = sts_rssi_output_get(); // LOG_INFO(TRACE_MODULE_APP, "STS RSSI: %f %f %f %f\r\n", sts_rssi[0], sts_rssi[1], sts_rssi[2], sts_rssi[3]); #endif } else { range_result->aoa_azimuth = 0; range_result->aoa_elevation = 0; } #if FILTER_EN if (uwb_app_config.filter_en) { // filter process ranging_result_filter(&range_result->distance, &range_result->aoa_azimuth, &range_result->aoa_elevation); } #endif if (uwb_app_config.session_param.aoa_result_req) { board_ranging_result_correct(&range_result->distance, &range_result->aoa_azimuth, &range_result->aoa_elevation); } #ifdef UWB_UCI_TEST_EN #if AOA_EN LOG_INFO(TRACE_MODULE_APP, "Distance %ucm, AoA Azimuth %d Elevation %d Azimuth FoM %u\r\n", distance, mk_q7_to_s16(range_result->aoa_azimuth), mk_q7_to_s16(range_result->aoa_elevation), range_result->aoa_azimuth_fom); #elif PDOA_3D_EN LOG_INFO(TRACE_MODULE_APP, "Distance %ucm, PDoA Azimuth %d Elevation %d Azimuth FoM %u\r\n", distance, mk_q7_to_s16(range_result->aoa_azimuth), mk_q7_to_s16(range_result->aoa_elevation), range_result->aoa_azimuth_fom); #else LOG_INFO(TRACE_MODULE_APP, "Distance %ucm\r\n", distance); #endif #endif struct RANGE_DATA_T *range_data = &ranging_env.range_data; range_data->measurements_num = 1; uint16_t target_addr = uwbs_peer_short_addr_get(); range_result->mac_addr[0] = target_addr & 0xff; range_result->mac_addr[1] = (target_addr >> 8) & 0xff; range_result->slot_idx = ranging_env.responder_slot_idx; #if CSI_EN // need to increase slot duration for log printing struct RANGING_TAPS_INF_T taps_inf; ranging_taps_inf_get(&taps_inf); ranging_env.frame[1].NLoS = taps_inf.NLoS; ranging_env.frame[1].fom = taps_inf.FoM; LOG_INFO(TRACE_MODULE_APP, "NLoS %u FoM %u\r\n", taps_inf.NLoS, taps_inf.FoM); // LOG_INFO(TRACE_MODULE_APP, "fap: %d, %f\r\n", taps_inf.fap_loc, taps_inf.fap_pow); // LOG_INFO(TRACE_MODULE_APP, "tap1: %d, %f\r\n", taps_inf.tap1_loc, taps_inf.tap1_pow); // LOG_INFO(TRACE_MODULE_APP, "tap2: %d, %f\r\n", taps_inf.tap2_loc, taps_inf.tap2_pow); // LOG_INFO(TRACE_MODULE_APP, "tap3: %d, %f\r\n", taps_inf.tap3_loc, taps_inf.tap3_pow); // float chtaps_re[128]; // float chtaps_im[128]; // ranging_multi_taps_iq_get(chtaps_re, chtaps_im, 128); // for (uint8_t i = 0; i < 128; i++) // { // LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "%f, %f\r\n", chtaps_re[i], chtaps_im[i]); // } #else ranging_fom_get(&ranging_env.frame[1].NLoS, &ranging_env.frame[1].fom); #endif // Retrieve Response-FoM and Response-NLoS from final packet uint8_t FoM = usr_pkt->msg.final_msg[MSG_FINAL_FOM_IDX(ranging_env.responder_slot_idx)]; uint8_t NLoS = usr_pkt->msg.final_msg[MSG_FINAL_NLOS_IDX(ranging_env.responder_slot_idx)]; #if RANGING_FOM_FILTER_EN uint8_t fap_valid = usr_pkt->msg.final_msg[MSG_FINAL_FAP_VALID_IDX(ranging_env.responder_slot_idx)]; uint8_t gaps_num = usr_pkt->msg.final_msg[MSG_FINAL_GAPS_NUM_IDX(ranging_env.responder_slot_idx)]; uint8_t gaps[CIR_LEN / CE_WIN - 1]; memcpy(gaps, &usr_pkt->msg.final_msg[MSG_FINAL_GAPS_IDX(ranging_env.responder_slot_idx)], (CIR_LEN / CE_WIN - 1)); debug_csi.ranging_fom = ranging_fom_calculate(&debug_csi, fap_valid, gaps, gaps_num); #endif LOG_INFO(TRACE_MODULE_APP, "Poll-FoM %d, Response-FoM %d Final-FoM %d, Poll-NLoS %d, Response-NLoS %d Final-NLoS %d\r\n", ranging_env.frame[0].fom, FoM, ranging_env.frame[1].fom, ranging_env.frame[0].NLoS, NLoS, ranging_env.frame[1].NLoS); range_result->NLoS = MAX(NLoS, MAX(ranging_env.frame[0].NLoS, ranging_env.frame[1].NLoS)); // output result uwbapi_report_ranging_data(range_data); // int8_t expected_rssi = ranging_expected_rssi_get(ranging_tx_power_get(), range_result->distance, 2, 0); // LOG_INFO(TRACE_MODULE_APP, "Expected RSSI: %ddBm\r\n", expected_rssi); } else { LOG_INFO(TRACE_MODULE_APP, "Timestamp error\r\n"); } #ifdef SE_DEMO_EN slave_process_apdu(NULL, 0, 1); #endif #if RSSI_EN LOG_INFO(TRACE_MODULE_APP, "RSSI: %ddBm, SNR: %ddB \r\n", ind->rssi, ind->snr); #endif // calculate_first_tap_power(2, 2); // print_preamble_chest(2, 2); // print_sts_ch_taps(2); } #if RANGING_RESULT_REPORT_EN else if (ind->ranging_stage == RANGING_RESULT) { LOG_INFO(TRACE_MODULE_APP, "[RX][%u][%d] Result\r\n", ind->rx_len, ranging_env.main_ant_id); uint16_t responder_addr = READ_SHORT(&usr_pkt->msg.result_msg[MSG_RESPONSE_RESPONDER_ID_IDX]); uint8_t responder_idx = ranging_responder_idx_get(responder_addr); if (ranging_env.initiator_result_flag & (1 << responder_idx)) { uint16_t distance = READ_SHORT(&usr_pkt->msg.result_msg[2]); LOG_INFO(TRACE_MODULE_APP, "Address %X, Distance %ucm, Poll-FoM %d, Response-FoM %d Final-FoM %d, Poll-NLoS %d, Response-NLoS %d Final-NLoS %d\r\n", responder_addr, distance, usr_pkt->msg.result_msg[4], ranging_env.frame[responder_idx].fom, usr_pkt->msg.result_msg[6], usr_pkt->msg.result_msg[5], ranging_env.frame[responder_idx].NLoS, usr_pkt->msg.result_msg[7]); } } #endif #if PRINT_PAYLOAD_EN if (ind->rx_len) { LOG_INFO(TRACE_MODULE_APP, " "); for (uint8_t i = 0; i < ind->rx_len; i++) { LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "%02x ", ind->rx_data[i]); } LOG_INFO(TRACE_NO_OPTION | TRACE_MODULE_APP, "\r\n"); } #endif } else { LOG_INFO(TRACE_MODULE_APP, "UWB RX fail 0x%04x\r\n", ind->status); } } break; default: break; } } // Handle events else if (event) { } }