/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mk_trace.h" #include "mk_uwb.h" #include "mk_aes.h" #include "mk_power.h" #include "mk_misc.h" #include "lib_aoa.h" #include "lib_ranging.h" #include "ranging_fira.h" #include "uwb_twr.h" #ifdef RADAR_EN #include "uwb_radar.h" #endif #if KF_EN #include "lib_kf.h" #endif #if PDOA_3D_EN #include "lib_pdoa_3d.h" #endif #include "board.h" #if PDOA_3D_EN #define PDOA_3D_SUPPORT_NUM 100 #define PDOA_3D_TIMEOUT_MS 2000 static struct PDOA_3D_MAC_ADDR_T mac_addr_cache[PDOA_3D_SUPPORT_NUM]; static struct PDOA_3D_PDOA_DATA_T pdoa_data_cache[PDOA_3D_SUPPORT_NUM]; #endif #if KF_EN && FILTER_EN #define KF_SUPPORT_NUM 3 #define KF_TIMEOUT_MS 2000 static struct KF_MAC_ADDR_T kf_mac_addr_cache[KF_SUPPORT_NUM]; static struct KF_CHANNEL_CACHE_T kf_channel_cache[KF_SUPPORT_NUM]; static struct KF_MAT_VALUE_CACHE_T kf_mat_value_cache[KF_SUPPORT_NUM]; #endif struct RANGING_ENV_T ranging_env; uint8_t fira_uwb_tx_buf[PHY_PAYLOAD_LEN_MAX]; static struct RANGING_CB_T ranging_cb; static struct UWB_OP_T op = { .session_configure = ranging_configure, .session_start = ranging_start, .session_stop = ranging_stop, .session_local_addr_set = ranging_local_addr_set, .session_peer_addr_set = ranging_peer_addr_set, .session_responder_addr_add = ranging_responder_addr_add, .session_responder_list_clr = ranging_responder_list_clr, .session_responder_num_get = ranging_responder_num_get, .session_responder_addr_get = ranging_responder_addr_get, .session_dynamic_update_responder_list = ranging_dynamic_update_respoder_list, .session_set_ccc_ursk = NULL, #ifdef RADAR_EN .vendor_session_configure = uwb_radar_configure, .vendor_session_start = uwb_radar_start, .vendor_session_stop = uwb_radar_stop, #else .vendor_session_configure = NULL, .vendor_session_start = NULL, .vendor_session_stop = NULL, #endif }; static void ranging_tx_process(struct MAC_HW_REPORT_T *tx_report); static void ranging_rx_process(struct MAC_HW_REPORT_T *rx_report); void app_session_init(void); //------------------------------------------------------------------------------ int ranging_init(uint8_t handle_id) { /* store handler ID */ ranging_cb.handle_id = handle_id; /* init rx queue */ WSF_QUEUE_INIT(&ranging_cb.msg_queue); ranging_cb.daemon_timer.handlerId = handle_id; ranging_cb.daemon_timer.msg.event = RANGING_DAEMON_TIMER_MSG; LOG_INFO(TRACE_MODULE_APP, "Ranging lib version: %s\r\n", MK8000_get_rangelib_version()); LOG_INFO(TRACE_MODULE_APP, "AoA lib version: %s\r\n", MK8000_get_aoalib_version()); return 0; } int ranging_deinit(void) { return 0; } // This function will be called by uwbapi_session_init() void app_session_init(void) { // register process handler for MAC TX done and RX done mac_register_process_handler(ranging_tx_process, ranging_rx_process); uwbs_handler_init(&op); } void ranging_configure(void) { fira_keys_generate(); aes_update_key(AES_ID0, &fira_key.devPayKey.ukey.keyByte[0]); mac_update_ccm_key((uint32_t *)&fira_key.devPayKey.ukey.keyWord[0]); uwb_app_config.ranging_stage = RANGING_IDLE; ranging_env.uwb_period_prefetch_time = UWB_PERIOD_PREFETCH_TIME + LPM_PPM_COMPENSATION(LOW_POWER_CLOCK_PPM, uwb_app_config.session_param.ranging_interval); ranging_env.uwb_evt_prefetch_time = UWB_EVT_PREFETCH_TIME; ranging_env.uwb_rx_open_in_advance = UWB_RX_OPEN_IN_ADVANCE; ranging_env.uwb_rx_window = UWB_RX_WINDOW; ranging_env.uwb_rx_open_in_advance_wakeup = UWB_RX_OPEN_IN_ADVANCE + LPM_PPM_COMPENSATION(LOW_POWER_CLOCK_PPM, uwb_app_config.session_param.ranging_interval); ranging_env.uwb_rx_window_wakeup = UWB_RX_WINDOW + LPM_PPM_COMPENSATION(LOW_POWER_CLOCK_PPM, uwb_app_config.session_param.ranging_interval); ranging_env.ranging_period = MS_TO_PHY_TIMER_COUNT(uwb_app_config.session_param.ranging_interval); ranging_env.slots_per_block = (uint16_t)(uwb_app_config.session_param.ranging_interval / RSTU_TO_MS(uwb_app_config.session_param.slot_duration)); ASSERT(ranging_env.slots_per_block >= uwb_app_config.session_param.slots_per_round, "Ranging block parameters configure wrong"); ranging_env.slot_interval = RSTU_TO_PHY_TIMER_COUNT(uwb_app_config.session_param.slot_duration); ranging_env.round_duration = ranging_env.slot_interval * uwb_app_config.session_param.slots_per_round; ranging_env.nround_inblock = ranging_env.slots_per_block / uwb_app_config.session_param.slots_per_round; ranging_env.enable = 0; ranging_env.slot_idx = 0; // initial value of one-to-one case ranging_env.responder_slot_idx[SLOT_RESPONSE] = 2; // for response ranging_env.responder_slot_idx[SLOT_FINAL] = 3; // for final ranging_env.responder_slot_idx[SLOT_REPORT] = 4; // for report ranging_env.responder_slot_idx[SLOT_RESULT] = 5; // for result ranging_env.tof = 0; ranging_env.range_data.ranging_type = 0x1; // TWR (SS-TWR, DS-TWR) ranging_env.range_data.ranging_interval = uwb_app_config.session_param.ranging_interval; ranging_env.range_data.mac_addr_mode = uwbs_mac_addr_mode_get(); ranging_env.range_data.session_id = uwb_app_config.session_id; ranging_env.stride_length = uwb_app_config.session_param.stride_length; ranging_env.round_offset_in_block = 0; ranging_env.next_round_index = 0; if (ranging_env.stride_length > 0) { ranging_env.phy_sts_index = fira_key.phyStsIdxInit - (ranging_env.stride_length + 1) * ranging_env.slots_per_block; } else { ranging_env.phy_sts_index = fira_key.phyStsIdxInit - ranging_env.slots_per_block; } uwbs_configure(PHY_TX | PHY_RX, uwb_app_config.session_param.tx_power_level); #if CSI_EN ranging_aux_out_opt_set(CH_LEN_DEFAULT, 3); #endif #if (ANT_PATTERN == ANT_PATTERN_SQUARE) struct AOA_ANGLE_SPAN_T aoa_span; aoa_span.Ndim = 2; aoa_span.el_low = 90; aoa_span.el_high = 90; aoa_span.el_step = 1; aoa_span.az_low = 0; aoa_span.az_high = 359; aoa_span.az_step = 1; aoa_angle_search_span_set(&aoa_span); #endif #if AOA_EN aoa_aux_info_set(AOA_AUX_ANT_IQ_RSSI_PDOA_AOA_FOM); aoa_steering_vector_set((const float *)((uint32_t)((uwb_app_config.ppdu_params.ch_num == 9) ? svec_ch9_ptr : svec_ch5_ptr) | SRAM_BASE)); #else aoa_aux_info_set(AOA_AUX_ANT_IQ_RSSI); #endif aoa_param_config(); #if PDOA_3D_EN pdoa_3d_param_config(ANT_PATTERN, ANT_LAYOUT, PDOA_3D_AMBIGUITY_LEVEL_HIGH, mac_addr_cache, pdoa_data_cache, PDOA_3D_SUPPORT_NUM, PDOA_3D_TIMEOUT_MS); // pdoa_angle_reverse_set(1, 0); #endif #if FILTER_EN if (uwb_app_config.filter_en) { #if KF_EN loc_post_kf_config(uwb_app_config.session_param.ranging_interval, kf_mac_addr_cache, kf_channel_cache, kf_mat_value_cache, KF_SUPPORT_NUM, KF_TIMEOUT_MS); #else loc_post_filter_config(uwb_app_config.session_param.ranging_interval, 1, uwb_app_config.session_param.aoa_result_req); #endif } #endif LOG_INFO(TRACE_NO_REPORT_HOST | TRACE_MODULE_FIRA, "slot duration %d slots per round %d ranging interval %d\r\n", uwb_app_config.session_param.slot_duration, uwb_app_config.session_param.slots_per_round, uwb_app_config.session_param.ranging_interval); } void ranging_start(void) { ranging_env.enable = 1; ranging_env.lost_cnt = 0xFF; ranging_env.anchor_point = phy_timer_count_get(); ranging_env.slot_idx = 0; #if FIRA_TEST_EN ranging_env.num_of_measure = 0; uwb_app_config.session_param.result_report_config = (uwb_app_config.session_param.aoa_result_req) ? 0x0F : 1; #endif ranging_env.is_hopping = uwb_app_config.session_param.hopping_mode; enum DEV_ROLE_T role = uwb_app_config.session_param.device_role; if ((role == DEV_ROLE_INITIATOR) || (role == DEV_ROLE_GATE_CONTROLLER)) { uwb_app_config.ranging_stage = RANGING_RCM; phy_timer_target_set(ranging_env.anchor_point + ranging_env.ranging_period - ranging_env.uwb_period_prefetch_time, session_timer_callback); power_mode_request(POWER_UNIT_APP, POWER_MODE_POWER_DOWN); } else { ranging_env.is_hopping = 0; ranging_env.stride_length = 0; ranging_env.round_offset_in_block = 0; ranging_env.next_round_index = 0; uwb_app_config.ranging_stage = RANGING_SYNC; phy_sts_pkt_cfg_set(SP0); ranging_update_slot_index(ranging_env.slot_idx); power_on_radio(0, 1); mac_rx(EVT_MODE_MAC_PHY_ASAP, 0, ranging_env.ranging_period); mac_start(); power_mode_request(POWER_UNIT_APP, POWER_MODE_SLEEP); } ranging_env.count = 0; ranging_env.count_last = 0; uwb_app_config.ranging_count = 0; ranging_monitor_start(uwb_app_config.session_param.ranging_interval * 10); LOG_INFO(TRACE_NO_REPORT_HOST | TRACE_MODULE_APP, "Ranging start, role %d\r\n", uwb_app_config.session_param.device_role); } void ranging_stop(void) { ranging_env.enable = 0; ranging_monitor_stop(); LOG_INFO(TRACE_NO_REPORT_HOST | TRACE_MODULE_APP, "Ranging stop\r\n"); } void ranging_restart(void) { ranging_stop(); mac_restart(); mac_update_ccm_key((uint32_t *)&fira_key.devPayKey.ukey.keyWord[0]); ranging_start(); LOG_INFO(TRACE_MODULE_APP, "Ranging restart\r\n"); } int8_t ranging_tx_power_get(void) { return uwb_tx_power_get(uwb_app_config.ppdu_params.ch_num, uwb_app_config.session_param.tx_power_level); } void ranging_measurements_clear(void) { ranging_env.range_data.measurements_num = 0; for (uint8_t i = 0; i < MEASUREMENT_NUM_MAX; i++) { ranging_env.range_data.measurements[i].status = STATUS_VENDOR_RESERVED; } } void ranging_monitor_start(uint32_t time_ms) { WsfTimerStartMs(&ranging_cb.daemon_timer, time_ms, WSF_TIMER_PERIODIC); } void ranging_monitor_stop(void) { WsfTimerStop(&ranging_cb.daemon_timer); } #if MCTT_TEST_EN extern void ranging_round_print_ind(void); void ranging_round_print_ind(void) { struct RANGING_ROUND_PRINT_IND_T *ind; if ((ind = WsfMsgAlloc(sizeof(struct RANGING_ROUND_PRINT_IND_T))) != NULL) { ind->hdr.event = RANGING_ROUND_PRINT_MSG; // Send the message WsfMsgSend(ranging_cb.handle_id, ind); } else { LOG_WARNING(TRACE_MODULE_UWB, "memory is not enough for RANGING_ROUND_PRINT_IND_T\r\n"); } } #endif void uwb_pkt_tx_done_ind(const struct MAC_HW_REPORT_T *tx, enum RANGING_STAGE_T stage, uint8_t slot_idx) { struct UWB_PKT_TX_DONE_IND_T *ind; if ((ind = WsfMsgAlloc(sizeof(struct UWB_PKT_TX_DONE_IND_T) + tx->pkt_len)) != NULL) { ind->hdr.event = UWB_PKT_TX_DONE_MSG; ind->ranging_stage = (uint8_t)stage; ind->slot_idx = slot_idx; ind->status = tx->err_code; #if MCTT_TEST_EN ind->timestamp = tx->timestamp; ind->phy_shr_duration = phy_shr_duration(); #endif ind->tx_len = tx->pkt_len; if ((ind->tx_len) && (tx->pkt_data != NULL)) { memcpy(ind->tx_data, tx->pkt_data, tx->pkt_len); } // Send the message WsfMsgSend(ranging_cb.handle_id, ind); } else { LOG_WARNING(TRACE_MODULE_UWB, "memory is not enough for UWB_PKT_TX_DONE_IND_T\r\n"); } } #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wcast-qual" #endif uint16_t uwb_pkt_rx_done_ind(const struct MAC_HW_REPORT_T *rx, enum RANGING_STAGE_T stage, uint8_t slot_idx) { // send an indication to application struct UWB_PKT_RX_DONE_IND_T *ind = WsfMsgAlloc(sizeof(struct UWB_PKT_RX_DONE_IND_T) + rx->pkt_len); if (ind != NULL) { ind->hdr.event = UWB_PKT_RX_DONE_MSG; ind->ranging_stage = (uint8_t)stage; ind->slot_idx = slot_idx; ind->status = rx->err_code; ind->rssi = rx->rssi; ind->snr = rx->snr; #if MCTT_TEST_EN ind->timestamp = rx->timestamp; #endif if (rx->err_code == UWB_RX_OK) { uint8_t sts_pkt_cfg = (rx->phy_header >> 28) & 0x3; if ((sts_pkt_cfg != SP0) && (sts_valid_check() == 0)) { ind->status |= UWB_STS_ERR; } if ((rx->pkt_len) && (rx->pkt_data != NULL)) { memcpy(ind->rx_data, rx->pkt_data, rx->pkt_len); } ind->rx_len = rx->pkt_len; } #if MCTT_TEST_EN ind->phy_header = rx->phy_header; #endif // Send the message WsfMsgSend(ranging_cb.handle_id, ind); return ind->status; } else { LOG_WARNING(TRACE_MODULE_UWB, "memory is not enough for UWB_PKT_RX_DONE_IND_T\r\n"); return 0xFFFF; } } #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #pragma clang diagnostic pop #endif void distance_result_filter(uint8_t *mac_addr, uint16_t *distance) { if (distance == NULL) { return; } #if KF_EN float post_range; float range_meas = (float)*distance / 100; // call filter loc_kf_filter(range_meas, KF_DATA_TYPE_RANGING, mac_addr, &post_range); // update distance *distance = (uint16_t)(post_range * 100); // LOG_INFO(TRACE_MODULE_APP, "Peer %X, $%u %u;\r\n", READ_SHORT(mac_addr), (uint16_t)(range_meas*100),(uint16_t)(post_range*100)); #endif } void angle_result_filter(uint8_t *mac_addr, int16_t *angle, uint8_t type) { if (angle == NULL) { return; } #if KF_EN float post_angle; float angle_meas = mk_q7_to_f32(*angle); // call filter loc_kf_filter(angle_meas, (enum KF_DATA_TYPE_T)type, mac_addr, &post_angle); // update angle *angle = mk_f32_to_q7(post_angle); // LOG_INFO(TRACE_MODULE_APP, "Peer %X, $%d %d;\r\n", READ_SHORT(mac_addr), (int16_t)angle_meas,(int16_t)post_angle); #endif } void ranging_result_filter(uint8_t *mac_addr, uint16_t *distance, int16_t *azimuth, int16_t *elevation) { #if KF_EN if (distance) { distance_result_filter(mac_addr, distance); } if (azimuth) { angle_result_filter(mac_addr, azimuth, KF_DATA_TYPE_AZIMUTH); } if (elevation) { angle_result_filter(mac_addr, elevation, KF_DATA_TYPE_ELEVATION); } #else // do not support multi-channel if ((distance == NULL) || (azimuth == NULL)) { return; } float post_range, post_azimuth; int azimuth_meas = mk_q7_to_s16(*azimuth); float range_meas = (float)*distance; // call filter loc_post_filter(0, range_meas, azimuth_meas, &post_range, &post_azimuth); // update distance *distance = (uint16_t)(post_range); // update angle *azimuth = mk_f32_to_q7(post_azimuth); // LOG_INFO(TRACE_MODULE_APP, "$%u %u %d %d;\r\n", (uint16_t)(range_meas*100), (uint16_t)(post_range*100),(int16_t)azimuth_meas, (int16_t)post_azimuth); #endif } int measure_report_handler(const struct UWB_PKT_RX_DONE_IND_T *ind) { int ret = 0; struct RANGING_MEASUREMENT_T *range_result = &ranging_env.range_data.measurements[0]; if (uwb_app_config.session_param.ranging_round_usage == DS_TWR_DEFERRED || uwb_app_config.session_param.ranging_round_usage == DS_TWR) { if (1 == measurement_report_message_type1_process(ind->rx_data, ind->rx_len)) { int64_t Tround1 = 0; int64_t Tround2 = ranging_tround(DEV_ROLE_RESPONDER, 0); int64_t Treply1 = ranging_treply(DEV_ROLE_RESPONDER, 0); int64_t Treply2 = 0; struct MEASUREMENT_REPORT_TYPE1_INFO *p_info = &uwb_fira_msg_info.mrm_type1; for (uint8_t n = 0; n < p_info->reply_time_num; n++) { if (p_info->reply_time_list[n].address == uwbs_local_short_addr_get()) { Treply2 = p_info->reply_time_list[n].reply_time; break; } } if (Treply2) { Tround1 = p_info->first_round_trip_time + p_info->reply_time_list[0].reply_time - Treply2; } // LOG_INFO(TRACE_MODULE_FIRA, "Tround1 %u Treply1 %u Tround2 %u Treply2 %u\r\n", // (uint32_t)Tround1,(uint32_t)Treply1,(uint32_t)Tround2,(uint32_t)Treply2); if ((Tround1) && (Treply1) && (Tround2) && (Treply2)) { int64_t tof_i = (Tround1 * Tround2 - Treply1 * Treply2) / (Tround1 + Tround2 + Treply1 + Treply2); // outlier filter if (tof_i < 0) { tof_i = 0; } ranging_env.tof = (uint32_t)tof_i; double tof_f = (double)TIMESTAMP_UNIT_TO_NS(ranging_env.tof); range_result->distance = (uint16_t)(tof_f * 0.299702547 * VP_VAL - RANGING_CORR); // LOG_INFO(TRACE_MODULE_FIRA, "Tround1 %lld Treply1 %lld Tround2 %lld Treply2 %lld\r\n", Tround1, Treply1, Tround2, Treply2); ret = 1; } } else { range_result->status = STATUS_FAILED; } } else if (uwb_app_config.session_param.ranging_round_usage == SS_TWR_DEFERRED) { #if FIRA_TEST_EN volatile int64_t Tround = 0; volatile int64_t Treply = ranging_treply(DEV_ROLE_RESPONDER, 0); // Measurement Report Message Type 2 // 34-35 --> Message Control // 36-37 --> Round Index // 40... --> Round-trip Time List uint8_t responder_num = (ind->rx_data[34] >> 2); for (uint8_t n = 0; n < responder_num; n++) { uint16_t addr = READ_SHORT(&ind->rx_data[38 + 6 * n]); if (addr == uwbs_local_short_addr_get()) { Tround = (int64_t)READ_WORD(&ind->rx_data[40 + 6 * n]); break; } } #else int64_t Tround = 0; int64_t Treply = ranging_treply(DEV_ROLE_RESPONDER, 0); // 34 --> Message Control // 35-36 --> Round Index // 37... --> Round-trip Time List uint8_t responder_num = (ind->rx_data[34] >> 2); for (uint8_t n = 0; n < responder_num; n++) { uint16_t addr = READ_SHORT(&ind->rx_data[37 + 6 * n]); if (addr == uwbs_local_short_addr_get()) { Tround = READ_WORD(&ind->rx_data[39 + 6 * n]); break; } } #endif // LOG_INFO(TRACE_MODULE_FIRA, "Tround: %lld, Treply: %lld\r\n", Tround, Treply); if ((Tround) && (Treply)) { // corrected by frequency offset // Treply = (int64_t)((double)Treply * (1 - (double)ranging_env.freq_offset_filter / ch_center_freq_map[uwb_app_config.ppdu_params.ch_num])); Tround = (int64_t)((double)Tround * (1 + (double)ranging_env.freq_offset_filter / ch_center_freq_map[uwb_app_config.ppdu_params.ch_num])); int64_t tof_i = (Tround - Treply) / 2; // outlier filter if (tof_i < 0) { tof_i = 0; } ranging_env.tof = (uint32_t)tof_i; double tof_f = (double)TIMESTAMP_UNIT_TO_NS(ranging_env.tof); range_result->distance = (uint16_t)(tof_f * 0.299702547 * VP_VAL - RANGING_CORR); ret = 1; } else { range_result->status = STATUS_FAILED; } } else if (uwb_app_config.session_param.ranging_round_usage == SS_TWR) { if (1 == measurement_report_message_type2_process(ind->rx_data, ind->rx_len)) { struct MEASUREMENT_REPORT_TYPE2_INFO *p_info = &uwb_fira_msg_info.mrm_type2; volatile int64_t Tround = ranging_tround(DEV_ROLE_INITIATOR, ind->slot_idx - 1); volatile int64_t Treply = p_info->flag_reply_time == 1 ? p_info->reply_time : 0; if ((Tround) && (Treply)) { int64_t tof_i = (Tround - Treply) / 2; // outlier filter if (tof_i < 0) { tof_i = 0; } ranging_env.tof = (uint32_t)tof_i; double tof_f = (double)TIMESTAMP_UNIT_TO_NS(ranging_env.tof); range_result->distance = (uint16_t)(tof_f * 0.299702547 * VP_VAL - RANGING_CORR); ret = 1; } else { range_result->status = STATUS_FAILED; } } else { range_result->status = STATUS_FAILED; } } return ret; } int ranging_result_report_handler(const struct UWB_PKT_RX_DONE_IND_T *ind) { int ret = 0; uint8_t slot_idx = (ranging_env.result_flag >> 8) & 0xFF; uint8_t status = ranging_env.result_flag & 0xFF; // 1. update if (status & 0x1) { uint32_t tof = 0; int16_t azimuth = 0; int16_t elevation = 0; uint8_t azimuth_fom = 0; uint8_t elevation_fom = 0; // process rx-result packet uint8_t flag = ind->rx_data[34]; if (flag & 0x01) { tof = READ_WORD(&ind->rx_data[35]); } if (flag & 0x02) { azimuth = (int16_t)READ_SHORT(&ind->rx_data[39]); } if (flag & 0x04) { elevation = (int16_t)READ_SHORT(&ind->rx_data[41]); if (flag & 0x08) { azimuth_fom = ind->rx_data[43]; elevation_fom = ind->rx_data[44]; } } else { if (flag & 0x08) { azimuth_fom = ind->rx_data[41]; elevation_fom = ind->rx_data[42]; } } uint8_t initiator_tx_slot_count = 0; if (uwb_app_config.session_param.ranging_round_usage == DS_TWR_DEFERRED) { initiator_tx_slot_count = 4; // rcm + poll + final + report } else if (uwb_app_config.session_param.ranging_round_usage == SS_TWR_DEFERRED) { initiator_tx_slot_count = 3; // rcm + poll + report } else if (uwb_app_config.session_param.ranging_round_usage == DS_TWR) { initiator_tx_slot_count = 2; // poll + final } uint8_t responder_idx = slot_idx - initiator_tx_slot_count - ranging_responder_num_get(); uint16_t target_addr = ranging_responder_addr_get(responder_idx); double tof_f = (double)TIMESTAMP_UNIT_TO_NS(tof); struct RANGING_MEASUREMENT_T *range_result = &ranging_env.range_data.measurements[responder_idx]; range_result->mac_addr[0] = target_addr & 0xff; range_result->mac_addr[1] = (target_addr >> 8) & 0xff; // update distance range_result->distance = (uint16_t)(tof_f * 0.299702547 * VP_VAL - RANGING_CORR); // update destination angles range_result->aoa_dst_azimuth = uwbapi_angle_ota_format_to_q7(azimuth, 180); range_result->aoa_dst_elevation = uwbapi_angle_ota_format_to_q7(elevation, 90); range_result->aoa_dst_azimuth_fom = azimuth_fom; range_result->aoa_dst_elevation_fom = elevation_fom; if (range_result->status == STATUS_RANGING_RX_RESPONSE_OK) { // check this flag to send out measurement report range_result->status = STATUS_OK; ranging_env.range_data.measurements_num++; if (uwb_app_config.session_param.aoa_result_req == 0) { range_result->aoa_azimuth = 0; range_result->aoa_elevation = 0; } #if FILTER_EN if (uwb_app_config.filter_en) { // multi-channel filter process #if PDOA_3D_EN ranging_result_filter(range_result->mac_addr, NULL, &range_result->aoa_azimuth, &range_result->aoa_elevation); #endif } #endif if (uwb_app_config.session_param.aoa_result_req) { board_ranging_result_correct(&range_result->distance, &range_result->aoa_azimuth, &range_result->aoa_elevation); } } } // 2. complete if ((status & 0x2) && (ranging_env.range_data.measurements_num)) { ret = 1; } // LOG_INFO(TRACE_MODULE_FIRA, "result report %x %d\r\n", ranging_env.result_flag, ret); return ret; } void session_timer_callback(void *dev, uint32_t time) { // LOG_INFO(TRACE_MODULE_FIRA, "PHY timer slot %d\r\n", ranging_env.slot_idx); // board_led_on(BOARD_LED_2); if (uwb_app_config.session_param.ranging_round_usage == DS_TWR_DEFERRED || uwb_app_config.session_param.ranging_round_usage == SS_TWR_DEFERRED) { ds_twr_phy_timer_callback(dev, time); } else if (uwb_app_config.session_param.ranging_round_usage == DS_TWR || uwb_app_config.session_param.ranging_round_usage == SS_TWR) { ds_twr_non_deferred_phy_timer_callback(dev, time); } // board_led_off(BOARD_LED_2); } enum RANGING_STAGE_T session_fsm(const struct MAC_HW_REPORT_T *ind) { // LOG_INFO(TRACE_MODULE_FIRA, "FSM %02x slot %d\r\n", uwb_app_config.ranging_stage, ranging_env.slot_idx); // board_led_on(BOARD_LED_2); enum RANGING_STAGE_T stage = RANGING_IDLE; if (uwb_app_config.session_param.ranging_round_usage == DS_TWR_DEFERRED || uwb_app_config.session_param.ranging_round_usage == SS_TWR_DEFERRED) { stage = ds_twr_fsm(ind); } else if (uwb_app_config.session_param.ranging_round_usage == DS_TWR || uwb_app_config.session_param.ranging_round_usage == SS_TWR) { stage = ds_twr_non_deferred_fsm(ind); } // board_led_off(BOARD_LED_2); return stage; } static void ranging_tx_process(struct MAC_HW_REPORT_T *tx_report) { session_fsm(tx_report); } static void ranging_rx_process(struct MAC_HW_REPORT_T *rx_report) { session_fsm(rx_report); }