/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mk_trace.h" #include "mk_wdt.h" #include "mk_reset.h" #include "mk_gpio.h" #include "mk_misc.h" #include "mk_sleep_timer.h" #include "mk_power.h" #include "mk_uwb.h" #include "mk_calib.h" #include "mk_flash.h" #include "board.h" #include "pal_sys.h" #include "wsf_os.h" #include "wsf_timer.h" #include "wsf_buf.h" #include "wsf_nvm.h" #include "app.h" #include "uwb_test.h" #include "uwb_api.h" #include "crc.h" #include "libc_rom.h" extern uint8_t uwb_rx_done; static uint8_t tx_payload[127]; static uint8_t tx_len = UWB_TEST_PER_PKT_LEN; static uint8_t per_rx_done = 1; //***************************************************************************** // // WSF buffer pools. // //***************************************************************************** #define WSF_BUF_POOLS 5 // Default pool descriptor. static wsfBufPoolDesc_t poolDescriptors[WSF_BUF_POOLS] = { {32, 26}, {64, 24}, {128, 4}, {256 + 32, 4}, {1024 + 32, 2}, }; static void sleep_timer_callback(void *dev, uint32_t time) { // LOG_INFO(TRACE_MODULE_APP, "Wake up by sleep timer %d\r\n", time); } static void test_periodic_tx_callback(uint32_t *send_num_pkt) { LOG_INFO(TRACE_MODULE_APP, "PER Test TX Done\r\n"); board_led_toggle(BOARD_LED_2); } static void uwb_per_test_tx(void) { struct TEST_CFG_PARAM_T test_param; test_param.num_packets = 0; // always test_param.t_gap = UWB_TEST_PER_TX_GAP; test_param.t_win = UWB_TEST_PER_RX_WIN; uwbapi_test_config_set(&test_param); uwbapi_test_periodic_tx(tx_len, tx_payload, test_periodic_tx_callback); } static void test_per_rx_callback(struct TEST_PER_RX_T *report) { LOG_INFO(TRACE_MODULE_APP, "PER Test RX Done\r\n"); board_led_toggle(BOARD_LED_2); per_rx_done = 1; uint32_t TO_err = report->attempts - report->eof; uint32_t BD_err = report->acq_reject; uint32_t SFD_err = report->sfd_fail; uint32_t PHR_err = report->phr_bit_error; uint32_t PSDU_err = report->psdu_bit_error - TO_err; float per = (float)(BD_err + SFD_err + PHR_err + PSDU_err + TO_err) / (float)report->attempts; LOG_INFO(TRACE_MODULE_APP, "PER %f%% BD err %u SFD err %u PHR err %u PLD err %u TO err %u\r\n", per * 100, BD_err, SFD_err, PHR_err, PSDU_err, TO_err); } static void uwb_per_test_rx(void) { struct TEST_CFG_PARAM_T test_param; test_param.num_packets = UWB_TEST_PER_PKT_NUM; test_param.t_gap = UWB_TEST_PER_TX_GAP; test_param.t_win = UWB_TEST_PER_RX_WIN; uwbapi_test_config_set(&test_param); uwbapi_test_per_rx(tx_len, tx_payload, test_per_rx_callback); app_timer_set(APP_TEST_TIMER2, UWB_TEST_PER_PKT_NUM * (UWB_TEST_PER_TX_GAP / 1000) + 2000, WSF_TIMER_PERIODIC); } void app_process_handle(uint8_t msg_id, const void *param) { switch (msg_id) { case APP_TEST_TIMER1_MSG: { LOG_INFO(TRACE_MODULE_APP, "TEST TIMER1\r\n"); } break; case APP_TEST_TIMER2_MSG: { LOG_INFO(TRACE_MODULE_APP, "TEST TIMER2\r\n"); if (per_rx_done) { per_rx_done = 0; uwbapi_test_per_rx(tx_len, tx_payload, test_per_rx_callback); } } break; default: break; } } static void board_init(void) { // Clock configuration board_clock_run(); // Pin configuration board_pins_config(); // Trace configuration board_debug_console_open(TRACE_PORT_UART0); // Reset reason reset_cause_get(); reset_cause_clear(); // Load calibration parameters from NVM uint32_t internal_flash = (REG_READ(0x40000018) >> 17) & 0x1; uint32_t external_flash = (REG_READ(0x40010030) >> 28) & 0x3; if (internal_flash || external_flash == 1) { WsfNvmInit(); board_calibration_params_load(); flash_close(FLASH_ID0); } else { board_calibration_params_default(); } // Chip calibration calib_chip(); // Configure IO_02 for role selection gpio_open(); gpio_pin_set_dir(IO_PIN_2, GPIO_DIR_IN, 0); io_pull_set(IO_PIN_2, IO_PULL_UP, IO_PULL_UP_LEVEL1); board_led_init(); board_configure(); board_led_on(BOARD_LED_2); } int main(void) { // Initialize MCU system board_init(); // Disable watchdog timer wdt_close(WDT_ID0); LOG_INFO(TRACE_MODULE_APP, "UWB PER test example\r\n"); // Platform init for WSF PalSysInit(); // Initialize os // // Set up timers for the WSF scheduler. // WsfOsInit(); WsfTimerInit(); sys_tick_callback_set(WsfTimerUpdateTicks); // // Initialize a buffer pool for WSF dynamic memory needs. // uint32_t wsfBufMemLen = WsfBufInit(WSF_BUF_POOLS, poolDescriptors); if (wsfBufMemLen > FREE_MEM_SIZE) { LOG_INFO(TRACE_MODULE_APP, "Memory pool is not enough %d\r\n", wsfBufMemLen - FREE_MEM_SIZE); } // // Create app task // wsfHandlerId_t handlerId = WsfOsSetNextHandler(app_handler); app_init(handlerId); // Create test task handlerId = WsfOsSetNextHandler(uwb_test_handler); uwb_test_init(handlerId); uwb_open(); // which RX ports will be used for AoA/PDoA phy_rx_ant_mode_set(RX_ANT_PORTS_COMBINATION); uwbs_init(); uwb_app_config.ranging_flow_mode = (uint8_t)(RANGING_FLOW_NONE); uwb_app_config.session_param.tx_power_level = board_param.tx_power_fcc[CALIB_CH(uwb_app_config.ppdu_params.ch_num)]; uwb_app_config.ppdu_params.rx_ant_id = (uint8_t)(RX_MAIN_ANT_PORT); // Initialize test session uint32_t session_id = 0x0000; uwbapi_session_init(session_id, SESSION_TYPE_DEVICE_TEST_MODE); // Initialize session parameters struct APP_CFG_PARAM_T param = {0}; param.ch_num = UWB_CH_NUM; param.prf_mode = UWB_MEAN_PRF; param.preamble_code_index = UWB_PREAMBLE_CODE_IDX; param.preamble_duration = UWB_PREAMBLE_DURATION; param.sfd_id = UWB_SFD_ID; param.psdu_data_rate = UWB_PSDU_DATA_RATE; param.sts_segment_num = UWB_STS_SEGMENT_NUM; param.sts_segment_len = UWB_STS_SEGMENT_LEN; param.aoa_result_req = 0; param.rframe_config = UWB_RFRAME_TYPE; param.sts_config = STS_STATIC; param.ranging_round_usage = DS_TWR_DEFERRED; param.mac_address_mode = ARRD_SHORT_USE_SHORT; param.mac_fcs_type = FCS_CRC_16; param.controlees_num = 1; param.multi_node_mode = UNICAST; param.result_report_config = 0x0F; param.ranging_round_control = 0x3; // Configure session parameters uwbapi_session_set_app_config(session_id, ¶m); // initialize test packet uint8_t fcs_len = (param.mac_fcs_type == FCS_CRC_16 ? 2 : 4); for (int i = 0; i < UWB_TEST_PER_PKT_LEN - fcs_len; i++) { tx_payload[i] = 0x55; } if (param.mac_fcs_type == FCS_CRC_16) { uint16_t fcs = fcs_crc_16(tx_payload, UWB_TEST_PER_PKT_LEN - fcs_len); tx_payload[UWB_TEST_PER_PKT_LEN - 2] = fcs & 0xff; tx_payload[UWB_TEST_PER_PKT_LEN - 1] = (fcs >> 8) & 0xff; } else { uint32_t fcs = crc32(tx_payload, UWB_TEST_PER_PKT_LEN - fcs_len); tx_payload[UWB_TEST_PER_PKT_LEN - 4] = fcs & 0xff; tx_payload[UWB_TEST_PER_PKT_LEN - 3] = (fcs >> 8) & 0xff; tx_payload[UWB_TEST_PER_PKT_LEN - 2] = (fcs >> 16) & 0xff; tx_payload[UWB_TEST_PER_PKT_LEN - 1] = (fcs >> 24) & 0xff; } tx_len = UWB_TEST_PER_PKT_LEN; // Do the test if (gpio_pin_get_val(IO_PIN_2) == 0) { uwb_per_test_tx(); } else { uwb_per_test_rx(); } // Initialize low power mode power_init(); power_mode_request(POWER_UNIT_USER, POWER_MODE_ACTIVE); // Enable sleep timer sleep_timer_open(true, SLEEP_TIMER_MODE_ONESHOT, sleep_timer_callback); while (1) { wsfOsDispatcher(); power_manage(); } } void app_restore_from_power_down(void) { }