/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mk_trace.h" #include "mk_wdt.h" #include "mk_reset.h" #include "mk_gpio.h" #include "mk_misc.h" #include "mk_sleep_timer.h" #include "mk_power.h" #include "mk_uwb.h" #include "mk_calib.h" #include "mk_flash.h" #include "board.h" #include "pal_sys.h" #include "wsf_os.h" #include "wsf_timer.h" #include "wsf_buf.h" #include "wsf_nvm.h" #include "app.h" #include "uwb_trx.h" #include "uwb_api.h" #include "lib_aoa.h" #include "libc_rom.h" #define CCA_TEST_EN 0 #define NBI_TEST_EN 0 #define CSMACA_TEST_EN 0 extern uint8_t uwb_tx_done; extern uint8_t uwb_rx_done; static uint8_t tx_payload[127]; // maximum: 1021 @ proprietary mode static uint16_t tx_len = 125; static uint32_t test_rounds = 0; static uint8_t test_on_flag = 0; //***************************************************************************** // // WSF buffer pools. // //***************************************************************************** #define WSF_BUF_POOLS 5 // Default pool descriptor. static wsfBufPoolDesc_t poolDescriptors[WSF_BUF_POOLS] = { {32, 26}, {64, 24}, {128, 4}, {256 + 32, 4}, {1024 + 32, 2}, }; static void sleep_timer_callback(void *dev, uint32_t time) { // LOG_INFO(TRACE_MODULE_APP, "Wake up by sleep timer %d\r\n", time); } static void uwb_update_tx_payload(uint32_t slot_idx) { tx_payload[0] = slot_idx & 0xff; tx_payload[1] = (slot_idx >> 8) & 0xff; tx_payload[2] = (slot_idx >> 16) & 0xff; tx_payload[3] = (slot_idx >> 24) & 0xff; } static void uwb_tx_test(void) { uwbs_configure(PHY_TX, uwb_app_config.session_param.tx_power_level); uwb_tx_done = 1; app_timer_set(APP_TEST_TIMER2, 50, WSF_TIMER_PERIODIC); } #if NBI_TEST_EN static int16_t sweep_freq = -100; #endif static void uwb_rx_test(void) { uwbs_configure(PHY_RX, 0); uwb_rx_done = 1; #if NBI_TEST_EN phy_nb_filter_config(1, sweep_freq, 3); #endif app_timer_set(APP_TEST_TIMER1, 50, WSF_TIMER_PERIODIC); } #if CCA_TEST_EN static void phy_done_callback(void *dev, uint32_t int_status) { if (int_status & 0x04) { int32_t rssi = phy_cca_rssi_get(); LOG_INFO(TRACE_MODULE_APP, "CCA RSSI %d\r\n", rssi); } LOG_INFO(TRACE_MODULE_APP, "PHY INT status %x\r\n", int_status); } #endif // // Button Handlers // static void GPIO_UserHandler(enum IO_PIN_T pin) { // LOG_INFO(TRACE_MODULE_APP, "GPIO Interrupt happen\r\n"); if (pin == BOARD_SW_1) { app_button_event_set(APP_BUTTON1_EVT); } } void app_process_handle(uint8_t msg_id, const void *param) { board_led_toggle(BOARD_LED_2); switch (msg_id) { case APP_TEST_TIMER1_MSG: { LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n"); LOG_INFO(TRACE_MODULE_APP, "TEST TIMER1\r\n"); #if CCA_TEST_EN // Power on radio power_on_radio(0, 1); phy_cca_start(1, phy_done_callback); #else if (uwb_rx_done) { uwb_rx_done = 0; power_off_radio(); #if NBI_TEST_EN int32_t energy = phy_nb_energy_get(); LOG_INFO(TRACE_MODULE_APP, "NB energy %d\r\n", energy); #endif sts_lsp_store_stop(); sts_lsp_store(); uwb_rx(0, 0, 50000); } #endif } break; case APP_TEST_TIMER2_MSG: { LOG_INFO(TRACE_MODULE_APP | TRACE_NO_OPTION, "\r\n"); LOG_INFO(TRACE_MODULE_APP, "TEST TIMER2\r\n"); if (uwb_tx_done) { uwb_tx_done = 0; power_off_radio(); uwb_update_tx_payload(test_rounds++); #if CSMACA_TEST_EN uint32_t target_time = phy_timer_count_get() + MS_TO_PHY_TIMER_COUNT(2); uwb_tx(tx_payload, tx_len, 2, target_time); #else if (uwb_app_config.ppdu_params.sts_pkt_cfg == SP3) { uwb_tx(NULL, 0, 0, 0); } else { uwb_tx(tx_payload, tx_len, 0, 0); } #endif } } break; case APP_DEBOUNCE_TIMER1_MSG: { if (gpio_pin_get_val(BOARD_SW_1)) { return; } LOG_INFO(TRACE_MODULE_APP, "DEBOUNCE TIMER1\r\n"); if (test_on_flag) { uwb_rx_force_off(0); uwb_rx_done = 1; board_led_off(BOARD_LED_1); test_on_flag = 0; } else { board_led_on(BOARD_LED_1); test_on_flag = 1; } } break; default: break; } } static void board_init(void) { // Clock configuration board_clock_run(); // Pin configuration board_pins_config(); // Trace configuration board_debug_console_open(TRACE_PORT_UART0); // Reset reason reset_cause_get(); reset_cause_clear(); // Load calibration parameters from NVM uint32_t internal_flash = (REG_READ(0x40000018) >> 17) & 0x1; uint32_t external_flash = (REG_READ(0x40010030) >> 28) & 0x3; if (internal_flash || external_flash == 1) { WsfNvmInit(); board_calibration_params_load(); flash_close(FLASH_ID0); } else { board_calibration_params_default(); } // Chip calibration calib_chip(); // Configure IO_02 for role selection gpio_open(); gpio_pin_set_dir(IO_PIN_2, GPIO_DIR_IN, 0); io_pull_set(IO_PIN_2, IO_PULL_UP, IO_PULL_UP_LEVEL1); board_led_init(); board_button_init(GPIO_UserHandler); board_configure(); } int main(void) { // Initialize MCU system board_init(); // Disable watchdog timer wdt_close(WDT_ID0); LOG_INFO(TRACE_MODULE_APP, "UWB TX/RX test\r\n"); // Platform init for WSF PalSysInit(); // Initialize os // // Set up timers for the WSF scheduler. // WsfOsInit(); WsfTimerInit(); sys_tick_callback_set(WsfTimerUpdateTicks); // // Initialize a buffer pool for WSF dynamic memory needs. // uint32_t wsfBufMemLen = WsfBufInit(WSF_BUF_POOLS, poolDescriptors); if (wsfBufMemLen > FREE_MEM_SIZE) { LOG_INFO(TRACE_MODULE_APP, "Memory pool is not enough %d\r\n", wsfBufMemLen - FREE_MEM_SIZE); } // // Create app task // wsfHandlerId_t handlerId = WsfOsSetNextHandler(app_handler); app_init(handlerId); // Create uwb task handlerId = WsfOsSetNextHandler(uwb_handler); uwb_init(handlerId); // set advanced parameters struct PHY_ADV_CONFIG_T adv_config = { .thres_fap_detect = 40, .nth_scale_factor = 4, .ranging_performance_mode = 0, #if RX_ANT_PORTS_NUM == 4 .skip_weakest_port_en = 1, #else .skip_weakest_port_en = 0, #endif }; phy_adv_params_configure(&adv_config); // Initialize UWBS uwbs_init(); uwbs_handler_init(NULL); uwb_app_config.ranging_flow_mode = (uint8_t)(RANGING_FLOW_NONE); uwb_app_config.session_param.tx_power_level = board_param.tx_power_fcc[CALIB_CH(uwb_app_config.ppdu_params.ch_num)]; uwb_app_config.ppdu_params.rx_ant_id = (uint8_t)(RX_MAIN_ANT_PORT); // Initialize test session uint32_t session_id = 0x0000; uwbapi_session_init(session_id, SESSION_TYPE_DEVICE_TEST_MODE); // Initialize session parameters struct APP_CFG_PARAM_T param = {0}; param.ch_num = UWB_CH_NUM; param.prf_mode = UWB_MEAN_PRF; param.preamble_code_index = UWB_PREAMBLE_CODE_IDX; param.preamble_duration = UWB_PREAMBLE_DURATION; param.sfd_id = UWB_SFD_ID; param.psdu_data_rate = UWB_PSDU_DATA_RATE; param.sts_segment_num = UWB_STS_SEGMENT_NUM; param.sts_segment_len = UWB_STS_SEGMENT_LEN; param.aoa_result_req = 0; param.rframe_config = UWB_RFRAME_TYPE; param.sts_config = STS_STATIC; param.ranging_round_usage = DS_TWR_DEFERRED; param.mac_address_mode = ARRD_SHORT_USE_SHORT; param.controlees_num = 1; param.multi_node_mode = UNICAST; param.result_report_config = 0x0F; param.ranging_round_control = 0x3; // Configure session parameters uwbapi_session_set_app_config(session_id, ¶m); if ((uwb_app_config.ppdu_params.sts_pkt_cfg == SP1) || (uwb_app_config.ppdu_params.sts_pkt_cfg == SP3)) { struct UWB_STS_KEY_CONFIG_T sts_iv_key; sts_iv_key.sts_vcounter = 0x1F9A3DE4; sts_iv_key.sts_vupper0 = 0xD37EC3CA; sts_iv_key.sts_vupper1 = 0xC44FA8FB; sts_iv_key.sts_vupper2 = 0x362EEB34; sts_iv_key.sts_key0 = 0x14EB220F; sts_iv_key.sts_key1 = 0xF86050A8; sts_iv_key.sts_key2 = 0xD1D336AA; sts_iv_key.sts_key3 = 0x14148674; phy_sts_key_configure(&sts_iv_key); phy_rx_sts_switch_mode_set(uwb_app_config.ppdu_params.sts_pkt_cfg, STS_NEVER_SWITCH, 0, 0); aoa_param_config(); } #if 0 // enable csi information output ranging_debug_csi_en_set(1); #endif // Do the test if (gpio_pin_get_val(IO_PIN_2) == 0) { uwb_tx_test(); } else { uwb_rx_test(); } // Initialize low power mode power_init(); power_mode_request(POWER_UNIT_USER, POWER_MODE_SLEEP); // Enable sleep timer sleep_timer_open(true, SLEEP_TIMER_MODE_ONESHOT, sleep_timer_callback); while (1) { wsfOsDispatcher(); power_manage(); } } void app_restore_from_power_down(void) { }