/* * Copyright (c) 2019-2023 Beijing Hanwei Innovation Technology Ltd. Co. and * its subsidiaries and affiliates (collectly called MKSEMI). * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into an MKSEMI * integrated circuit in a product or a software update for such product, * must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of MKSEMI nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * 4. This software, with or without modification, must only be used with a * MKSEMI integrated circuit. * * 5. Any software provided in binary form under this license must not be * reverse engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY MKSEMI "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MKSEMI OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef RANGING_LIB_H #define RANGING_LIB_H #include "mk_mac.h" #include "mk_phy.h" /** * @addtogroup MK8000_ALGO_Ranging * @{ */ #ifndef CHEST_DUMP_EN #define CHEST_DUMP_EN (1) #endif /* When debugging offline channel estimation, enable this macro */ #ifndef OFFLINE_CHEST_EN #define OFFLINE_CHEST_EN (0) #endif // total channel tap length #define MLAGS_LENGTH 160 // output channel tap length #define CH_LEN_DEFAULT (128) /** Ranging channel status information */ struct RANGING_CSI_T { uint32_t session_id; uint32_t sts_index; uint16_t ranging_status; uint16_t block_index; uint16_t round_index; uint16_t distance_cm; int16_t azimuth; uint8_t ranging_fom; uint8_t azimuth_fom; uint8_t frame_idx; uint8_t rframe_idx; uint16_t reserved; // pre-poll | poll | final | final-data struct FRAME_INF_T { int8_t rssi; int8_t snr; uint8_t rf_gain; uint8_t bb_gain; uint16_t bd_cnt; uint16_t sfd_cnt; uint16_t error_code; } frame[4]; // poll | final struct RFRAME_INF_T { int32_t freq_offset; float kfactor; uint32_t channel_power; uint32_t noise_power; int8_t main_tap_power; int8_t first_tap_power; uint8_t main_tap; uint8_t first_tap; uint8_t sts_main_tap; uint8_t sts_first_tap; uint8_t nlos; uint8_t fom; int8_t cir[128][2]; float sts_taps[11]; } rframe[2]; }; typedef struct { int16_t tap1_loc; int16_t tap2_loc; int16_t tap3_loc; float tap1_re; float tap1_im; float tap2_re; float tap2_im; float tap3_re; float tap3_im; int16_t fap_loc; float fap_pow; } ranging_aux_t; typedef struct { float Kfactor; ///> ratio of the main tap to the total energy int16_t loc_deviation; ///> Deviation in main tap location from the expected one float fom1; ///> Mean excess delay spread float fom2; ///> RMS delay spread float fom3; ///> Channel type: 0/1 : LoS, 2: Multipath, 3: NLos ranging_aux_t aux_data; ///> First path location and energy float mean_npwr; ///> Mean noise power (in offline CE mode) -- linear scale float max_npwr; ///> Max noise power (in offline CE mode) -- linear scale float chpwr; ///> Total channel power (in offline CE mode) -- linear scale } ranging_FoM_t; struct RANGING_TAPS_INF_T { int16_t fap_loc; int16_t tap1_loc; int16_t tap2_loc; int16_t tap3_loc; float fap_pow; float tap1_pow; float tap2_pow; float tap3_pow; float Kfactor; // ratio of the main tap to the total energy int16_t loc_deviation; // Deviation in main tap location from the expected one uint8_t NLoS; // 0/1: LoS, 2: Multipath, 3: NLoS uint8_t FoM; // 0 ~ 100 }; #ifdef __cplusplus extern "C" { #endif #if CHEST_DUMP_EN #define CIR_LEN 128 #define CE_WIN 16 #define PWR_TH 100 #define TAP_MARGIN 4 extern struct RANGING_CSI_T debug_csi; uint8_t first_path_align(uint8_t *ce_chest_gaps, uint8_t *ce_chest_gaps_num, int8_t ce_chest[CIR_LEN][2], uint8_t ce_fap, uint8_t th, uint8_t margin); uint8_t ranging_fom_calculate(struct RANGING_CSI_T *csi, uint8_t response_fom, uint8_t *response_tap_gaps, uint8_t response_tap_gaps_num); void dump_preamble_cir(uint8_t idx, uint8_t taps_num); void dump_sts_cir(uint8_t idx); void print_preamble_chest(uint8_t rx_pkt_num, uint8_t rframe_num); void print_sts_ch_taps(uint8_t rframe_num); void calculate_first_tap_power(uint8_t rx_pkt_num, uint8_t rframe_num); int8_t calculate_noise_floor(uint8_t rf_gain, uint8_t bb_gain); #endif /** * @brief Initialize all the global variables that will be used in the ranging lib. */ void ranging_lib_init(void); /** * @brief Enable or disable ranging debug CSI output * @param[in] en Enable or disable */ void ranging_debug_csi_en_set(uint8_t en); /** * @brief Get ranging debug CSI output status * @return ranging debug CSI output status */ uint8_t ranging_debug_csi_en_get(void); /** * @brief Set ranging frame type. * @param[in] type ranging frame type, SP0 ~ SP3 */ void ranging_frame_type_set(uint8_t type); /** * @brief Get ranging frame type. * @return ranging frame type SP0 ~ SP3 */ uint8_t ranging_frame_type_get(void); /** * @brief Detect the fisrt path of ranging frame. * @param[in] rssi Rx packet RSSI * @return delta of the first path */ int32_t ranging_first_path_detect(int8_t rssi); /** * @brief Calculate TX timestamp of the ranging frame. * * @param[in] timestamp PHY timer count of TX * @return TX timestamp (unit: 15.65ps) */ int64_t ranging_tx_time(uint32_t timestamp); /** * @brief Calculate RX timestamp of the ranging frame. * * @param[in] ind MAC RX report * @return RX timestamp (unit: 15.65ps) */ int64_t ranging_rx_time(const struct MAC_HW_REPORT_T *ind); /** * @brief Get ranging FAP FoM. * * @param[out] NLoS Non-Line of sight flag, 0/1: LoS, 2: Multipath, 3: NLoS * @param[out] FoM FAP confidence measure, 0 ~ 100 */ void ranging_fom_get(uint8_t *NLoS, uint8_t *FoM); /** * @brief Get multi-taps information. * * @param[out] inf multi-taps information */ void ranging_taps_inf_get(struct RANGING_TAPS_INF_T *inf); /** * @brief Get multi-taps I/Q result. * * @param[out] chtaps_re pointer of output buffer of multi-taps real part * @param[out] chtaps_im pointer of output buffer of multi-taps imagine part * @param[in] taps_num number of taps to be get, the maximum value is 128 */ void ranging_multi_taps_iq_get(float *chtaps_re, float *chtaps_im, uint8_t taps_num); #if OFFLINE_CHEST_EN /** * @brief Enable offline channel estimate. * * @param[in] en enable or disable */ void ranging_offline_chest_enable(uint8_t en); #endif /** * @brief Set antenna delay for ranging. * * @param[in] ant_idx antenna port index, from 0 to 3 * @param[in] delay_ps antenna delay, unit 15.6ps */ void ranging_ant_delays_set(uint8_t ant_idx, int16_t delay_ps); /** * @brief Get antenna delay for ranging. * * @param[in] ant_idx antenna port index, from 0 to 3 * @return antenna delay of the specified port, unit 15.6ps */ int16_t ranging_ant_delays_get(uint8_t ant_idx); /** * @brief Select aux information output * * @param [in] len Length of samples to be processed (64, 32) * @param [in] opt Options for aux information * 0 (000) - No auxiliary data is generated * 1 (001) - combo 1 (Kfactor, location deviation, LoS/NLoS) * 2 (010) - combo 2 (3 largest taps info) * 4 (100) - combo 3 (Mean excess delay, RMS excess delay) * 3 (011) - combo 1 and combo 2 * 5 (101) - combo 1 and combo 3 * 7 (111) - combo 1, 2 and 3 * */ void ranging_aux_out_opt_set(uint8_t len, uint8_t opt); /** * @brief Get UWB RX RSSI. * * @param[out] rssi RSSI (-110 ~ -10) dBm * @param[out] snr SNR (-21 ~ 20) dB */ void ranging_rssi_get(int8_t *rssi, int8_t *snr); /** * @brief Compute expected RSSI based on TX power and ranging distance result * * @param[in] uwb_tx_power Ranging UWB TX power in dBm * @param[in] distance Ranging distance result in cm * @param[in] path_loss_exp Ranges from 2 to 5 (including fractional values, simplified here) 2 - for outdoor, 3 or 4 for multipath channels * @param[in] ant_gain_loss Antenna gain or loss in dB */ int8_t ranging_expected_rssi_get(int8_t uwb_tx_power, uint16_t distance, uint8_t path_loss_exp, int8_t ant_gain_loss); /** * @brief Get ranging library version. * * @return String of ranging library version */ const char *MK8000_get_rangelib_version(void); #ifdef __cplusplus } #endif /** * @} */ #endif // RANGING_LIB_H