/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_fir_interpolate_q31.c * Description: Q31 FIR interpolation * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupFilters */ /** @addtogroup FIR_Interpolate @{ */ /** @brief Processing function for the Q31 FIR interpolator. @param[in] S points to an instance of the Q31 FIR interpolator structure @param[in] pSrc points to the block of input data @param[out] pDst points to the block of output data @param[in] blockSize number of samples to process @return none @par Scaling and Overflow Behavior The function is implemented using an internal 64-bit accumulator. The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. Thus, if the accumulator result overflows it wraps around rather than clip. In order to avoid overflows completely the input signal must be scaled down by 1/(numTaps/L). since numTaps/L additions occur per output sample. After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. */ void arm_fir_interpolate_q31( const arm_fir_interpolate_instance_q31 * S, const q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { #if (1) //#if !defined(ARM_MATH_CM0_FAMILY) q31_t *pState = S->pState; /* State pointer */ const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q31_t *pStateCur; /* Points to the current sample of the state */ q31_t *ptr1; /* Temporary pointer for state buffer */ const q31_t *ptr2; /* Temporary pointer for coefficient buffer */ q63_t sum0; /* Accumulators */ uint32_t i, blkCnt, tapCnt; /* Loop counters */ uint32_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */ uint32_t j; #if defined (ARM_MATH_LOOPUNROLL) q63_t acc0, acc1, acc2, acc3; q31_t x0, x1, x2, x3; q31_t c0, c1, c2, c3; #endif /* S->pState buffer contains previous frame (phaseLen - 1) samples */ /* pStateCur points to the location where the new input data should be written */ pStateCur = S->pState + (phaseLen - 1U); #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = blockSize >> 2U; while (blkCnt > 0U) { /* Copy new input sample into the state buffer */ *pStateCur++ = *pSrc++; *pStateCur++ = *pSrc++; *pStateCur++ = *pSrc++; *pStateCur++ = *pSrc++; /* Address modifier index of coefficient buffer */ j = 1U; /* Loop over the Interpolation factor. */ i = (S->L); while (i > 0U) { /* Set accumulator to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Initialize state pointer */ ptr1 = pState; /* Initialize coefficient pointer */ ptr2 = pCoeffs + (S->L - j); /* Loop over the polyPhase length. Unroll by a factor of 4. Repeat until we've computed numTaps-(4*S->L) coefficients. */ tapCnt = phaseLen >> 2U; x0 = *(ptr1++); x1 = *(ptr1++); x2 = *(ptr1++); while (tapCnt > 0U) { /* Read the input sample */ x3 = *(ptr1++); /* Read the coefficient */ c0 = *(ptr2); /* Perform the multiply-accumulate */ acc0 += (q63_t) x0 * c0; acc1 += (q63_t) x1 * c0; acc2 += (q63_t) x2 * c0; acc3 += (q63_t) x3 * c0; /* Read the coefficient */ c1 = *(ptr2 + S->L); /* Read the input sample */ x0 = *(ptr1++); /* Perform the multiply-accumulate */ acc0 += (q63_t) x1 * c1; acc1 += (q63_t) x2 * c1; acc2 += (q63_t) x3 * c1; acc3 += (q63_t) x0 * c1; /* Read the coefficient */ c2 = *(ptr2 + S->L * 2); /* Read the input sample */ x1 = *(ptr1++); /* Perform the multiply-accumulate */ acc0 += (q63_t) x2 * c2; acc1 += (q63_t) x3 * c2; acc2 += (q63_t) x0 * c2; acc3 += (q63_t) x1 * c2; /* Read the coefficient */ c3 = *(ptr2 + S->L * 3); /* Read the input sample */ x2 = *(ptr1++); /* Perform the multiply-accumulate */ acc0 += (q63_t) x3 * c3; acc1 += (q63_t) x0 * c3; acc2 += (q63_t) x1 * c3; acc3 += (q63_t) x2 * c3; /* Upsampling is done by stuffing L-1 zeros between each sample. * So instead of multiplying zeros with coefficients, * Increment the coefficient pointer by interpolation factor times. */ ptr2 += 4 * S->L; /* Decrement loop counter */ tapCnt--; } /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */ tapCnt = phaseLen % 0x4U; while (tapCnt > 0U) { /* Read the input sample */ x3 = *(ptr1++); /* Read the coefficient */ c0 = *(ptr2); /* Perform the multiply-accumulate */ acc0 += (q63_t) x0 * c0; acc1 += (q63_t) x1 * c0; acc2 += (q63_t) x2 * c0; acc3 += (q63_t) x3 * c0; /* Increment the coefficient pointer by interpolation factor times. */ ptr2 += S->L; /* update states for next sample processing */ x0 = x1; x1 = x2; x2 = x3; /* Decrement loop counter */ tapCnt--; } /* The result is in the accumulator, store in the destination buffer. */ *(pDst ) = (q31_t) (acc0 >> 31); *(pDst + S->L) = (q31_t) (acc1 >> 31); *(pDst + 2 * S->L) = (q31_t) (acc2 >> 31); *(pDst + 3 * S->L) = (q31_t) (acc3 >> 31); pDst++; /* Increment the address modifier index of coefficient buffer */ j++; /* Decrement loop counter */ i--; } /* Advance the state pointer by 1 * to process the next group of interpolation factor number samples */ pState = pState + 4; pDst += S->L * 3; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = blockSize % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* Copy new input sample into the state buffer */ *pStateCur++ = *pSrc++; /* Address modifier index of coefficient buffer */ j = 1U; /* Loop over the Interpolation factor. */ i = S->L; while (i > 0U) { /* Set accumulator to zero */ sum0 = 0; /* Initialize state pointer */ ptr1 = pState; /* Initialize coefficient pointer */ ptr2 = pCoeffs + (S->L - j); /* Loop over the polyPhase length. Repeat until we've computed numTaps-(4*S->L) coefficients. */ #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ tapCnt = phaseLen >> 2U; while (tapCnt > 0U) { /* Perform the multiply-accumulate */ sum0 += (q63_t) *ptr1++ * *ptr2; /* Upsampling is done by stuffing L-1 zeros between each sample. * So instead of multiplying zeros with coefficients, * Increment the coefficient pointer by interpolation factor times. */ ptr2 += S->L; sum0 += (q63_t) *ptr1++ * *ptr2; ptr2 += S->L; sum0 += (q63_t) *ptr1++ * *ptr2; ptr2 += S->L; sum0 += (q63_t) *ptr1++ * *ptr2; ptr2 += S->L; /* Decrement loop counter */ tapCnt--; } /* Loop unrolling: Compute remaining outputs */ tapCnt = phaseLen % 0x4U; #else /* Initialize tapCnt with number of samples */ tapCnt = phaseLen; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (tapCnt > 0U) { /* Perform the multiply-accumulate */ sum0 += (q63_t) *ptr1++ * *ptr2; /* Upsampling is done by stuffing L-1 zeros between each sample. * So instead of multiplying zeros with coefficients, * Increment the coefficient pointer by interpolation factor times. */ ptr2 += S->L; /* Decrement loop counter */ tapCnt--; } /* The result is in the accumulator, store in the destination buffer. */ *pDst++ = (q31_t) (sum0 >> 31); /* Increment the address modifier index of coefficient buffer */ j++; /* Decrement the loop counter */ i--; } /* Advance the state pointer by 1 * to process the next group of interpolation factor number samples */ pState = pState + 1; /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. Now copy the last phaseLen - 1 samples to the satrt of the state buffer. This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCur = S->pState; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ tapCnt = (phaseLen - 1U) >> 2U; /* copy data */ while (tapCnt > 0U) { *pStateCur++ = *pState++; *pStateCur++ = *pState++; *pStateCur++ = *pState++; *pStateCur++ = *pState++; /* Decrement loop counter */ tapCnt--; } /* Loop unrolling: Compute remaining outputs */ tapCnt = (phaseLen - 1U) % 0x04U; #else /* Initialize tapCnt with number of samples */ tapCnt = (phaseLen - 1U); #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ /* Copy data */ while (tapCnt > 0U) { *pStateCur++ = *pState++; /* Decrement loop counter */ tapCnt--; } #else /* alternate version for CM0_FAMILY */ q31_t *pState = S->pState; /* State pointer */ const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q31_t *pStateCur; /* Points to the current sample of the state */ q31_t *ptr1; /* Temporary pointer for state buffer */ const q31_t *ptr2; /* Temporary pointer for coefficient buffer */ q63_t sum0; /* Accumulators */ uint32_t i, blkCnt, tapCnt; /* Loop counters */ uint32_t phaseLen = S->phaseLength; /* Length of each polyphase filter component */ /* S->pState buffer contains previous frame (phaseLen - 1) samples */ /* pStateCur points to the location where the new input data should be written */ pStateCur = S->pState + (phaseLen - 1U); /* Total number of intput samples */ blkCnt = blockSize; /* Loop over the blockSize. */ while (blkCnt > 0U) { /* Copy new input sample into the state buffer */ *pStateCur++ = *pSrc++; /* Loop over the Interpolation factor. */ i = S->L; while (i > 0U) { /* Set accumulator to zero */ sum0 = 0; /* Initialize state pointer */ ptr1 = pState; /* Initialize coefficient pointer */ ptr2 = pCoeffs + (i - 1U); /* Loop over the polyPhase length */ tapCnt = phaseLen; while (tapCnt > 0U) { /* Perform the multiply-accumulate */ sum0 += ((q63_t) *ptr1++ * *ptr2); /* Increment the coefficient pointer by interpolation factor times. */ ptr2 += S->L; /* Decrement the loop counter */ tapCnt--; } /* The result is in the accumulator, store in the destination buffer. */ *pDst++ = (q31_t) (sum0 >> 31); /* Decrement loop counter */ i--; } /* Advance the state pointer by 1 * to process the next group of interpolation factor number samples */ pState = pState + 1; /* Decrement loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last phaseLen - 1 samples to the start of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCur = S->pState; tapCnt = phaseLen - 1U; /* Copy data */ while (tapCnt > 0U) { *pStateCur++ = *pState++; /* Decrement loop counter */ tapCnt--; } #endif /* #if !defined(ARM_MATH_CM0_FAMILY) */ } /** @} end of FIR_Interpolate group */