/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_conv_partial_q31.c * Description: Partial convolution of Q31 sequences * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupFilters */ /** @addtogroup PartialConv @{ */ /** @brief Partial convolution of Q31 sequences. @param[in] pSrcA points to the first input sequence @param[in] srcALen length of the first input sequence @param[in] pSrcB points to the second input sequence @param[in] srcBLen length of the second input sequence @param[out] pDst points to the location where the output result is written @param[in] firstIndex is the first output sample to start with @param[in] numPoints is the number of output points to be computed @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_ARGUMENT_ERROR : requested subset is not in the range [0 srcALen+srcBLen-2] @remark Refer to \ref arm_conv_partial_fast_q31() for a faster but less precise implementation of this function. */ arm_status arm_conv_partial_q31( const q31_t * pSrcA, uint32_t srcALen, const q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst, uint32_t firstIndex, uint32_t numPoints) { #if (1) //#if !defined(ARM_MATH_CM0_FAMILY) const q31_t *pIn1; /* InputA pointer */ const q31_t *pIn2; /* InputB pointer */ q31_t *pOut = pDst; /* Output pointer */ const q31_t *px; /* Intermediate inputA pointer */ const q31_t *py; /* Intermediate inputB pointer */ const q31_t *pSrc1, *pSrc2; /* Intermediate pointers */ q63_t sum; /* Accumulator */ uint32_t j, k, count, blkCnt, check; int32_t blockSize1, blockSize2, blockSize3; /* Loop counters */ arm_status status; /* Status of Partial convolution */ #if defined (ARM_MATH_LOOPUNROLL) q63_t acc0, acc1, acc2; /* Accumulator */ q31_t x0, x1, x2, c0; /* Temporary variables */ #endif /* Check for range of output samples to be calculated */ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* Conditions to check which loopCounter holds * the first and last indices of the output samples to be calculated. */ check = firstIndex + numPoints; blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0; blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3; blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex; blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 : (int32_t) numPoints) : 0; blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) + (int32_t) firstIndex); blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ /* The function is internally * divided into three stages according to the number of multiplications that has to be * taken place between inputA samples and inputB samples. In the first stage of the * algorithm, the multiplications increase by one for every iteration. * In the second stage of the algorithm, srcBLen number of multiplications are done. * In the third stage of the algorithm, the multiplications decrease by one * for every iteration. */ /* Set the output pointer to point to the firstIndex * of the output sample to be calculated. */ pOut = pDst + firstIndex; /* -------------------------- * Initializations of stage1 * -------------------------*/ /* sum = x[0] * y[0] * sum = x[0] * y[1] + x[1] * y[0] * .... * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] */ /* In this stage the MAC operations are increased by 1 for every iteration. The count variable holds the number of MAC operations performed. Since the partial convolution starts from firstIndex Number of Macs to be performed is firstIndex + 1 */ count = 1U + firstIndex; /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc2 = pIn2 + firstIndex; py = pSrc2; /* ------------------------ * Stage1 process * ----------------------*/ /* The first stage starts here */ while (blockSize1 > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ k = count >> 2U; while (k > 0U) { /* x[0] * y[srcBLen - 1] */ sum += (q63_t) *px++ * (*py--); /* x[1] * y[srcBLen - 2] */ sum += (q63_t) *px++ * (*py--); /* x[2] * y[srcBLen - 3] */ sum += (q63_t) *px++ * (*py--); /* x[3] * y[srcBLen - 4] */ sum += (q63_t) *px++ * (*py--); /* Decrement loop counter */ k--; } /* Loop unrolling: Compute remaining outputs */ k = count % 0x4U; #else /* Initialize k with number of samples */ k = count; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (k > 0U) { /* Perform the multiply-accumulate */ sum += (q63_t) *px++ * (*py--); /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q31_t) (sum >> 31); /* Update the inputA and inputB pointers for next MAC calculation */ py = ++pSrc2; px = pIn1; /* Increment MAC count */ count++; /* Decrement loop counter */ blockSize1--; } /* -------------------------- * Initializations of stage2 * ------------------------*/ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] * .... * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] */ /* Working pointer of inputA */ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) { pSrc1 = pIn1 + firstIndex - srcBLen + 1; } else { pSrc1 = pIn1; } px = pSrc1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); py = pSrc2; /* count is index by which the pointer pIn1 to be incremented */ count = 0U; /* ------------------- * Stage2 process * ------------------*/ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. * So, to loop unroll over blockSize2, * srcBLen should be greater than or equal to 4 */ if (srcBLen >= 4U) { #if defined (ARM_MATH_LOOPUNROLL) /* Loop unroll over blkCnt */ blkCnt = blockSize2 / 3; while (blkCnt > 0U) { /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; /* read x[0], x[1] samples */ x0 = *px++; x1 = *px++; /* Apply loop unrolling and compute 3 MACs simultaneously. */ k = srcBLen / 3; /* First part of the processing with loop unrolling. Compute 3 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 2 samples. */ do { /* Read y[srcBLen - 1] sample */ c0 = *(py); /* Read x[2] sample */ x2 = *(px); /* Perform the multiply-accumulate */ /* acc0 += x[0] * y[srcBLen - 1] */ acc0 += (q63_t) x0 * c0; /* acc1 += x[1] * y[srcBLen - 1] */ acc1 += (q63_t) x1 * c0; /* acc2 += x[2] * y[srcBLen - 1] */ acc2 += (q63_t) x2 * c0; /* Read y[srcBLen - 2] sample */ c0 = *(py - 1U); /* Read x[3] sample */ x0 = *(px + 1U); /* Perform the multiply-accumulate */ /* acc0 += x[1] * y[srcBLen - 2] */ acc0 += (q63_t) x1 * c0; /* acc1 += x[2] * y[srcBLen - 2] */ acc1 += (q63_t) x2 * c0; /* acc2 += x[3] * y[srcBLen - 2] */ acc2 += (q63_t) x0 * c0; /* Read y[srcBLen - 3] sample */ c0 = *(py - 2U); /* Read x[4] sample */ x1 = *(px + 2U); /* Perform the multiply-accumulate */ /* acc0 += x[2] * y[srcBLen - 3] */ acc0 += (q63_t) x2 * c0; /* acc1 += x[3] * y[srcBLen - 2] */ acc1 += (q63_t) x0 * c0; /* acc2 += x[4] * y[srcBLen - 2] */ acc2 += (q63_t) x1 * c0; px += 3U; py -= 3U; } while (--k); /* If the srcBLen is not a multiple of 3, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen - (3 * (srcBLen / 3)); while (k > 0U) { /* Read y[srcBLen - 5] sample */ c0 = *py--; /* Read x[7] sample */ x2 = *px++; /* Perform the multiply-accumulates */ /* acc0 += x[4] * y[srcBLen - 5] */ acc0 += (q63_t) x0 * c0; /* acc1 += x[5] * y[srcBLen - 5] */ acc1 += (q63_t) x1 * c0; /* acc2 += x[6] * y[srcBLen - 5] */ acc2 += (q63_t) x2 * c0; /* Reuse the present samples for the next MAC */ x0 = x1; x1 = x2; /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q31_t) (acc0 >> 31); *pOut++ = (q31_t) (acc1 >> 31); *pOut++ = (q31_t) (acc2 >> 31); /* Increment the pointer pIn1 index, count by 3 */ count += 3U; /* Update the inputA and inputB pointers for next MAC calculation */ px = pSrc1 + count; py = pSrc2; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = blockSize2 - 3 * (blockSize2 / 3); #else /* Initialize blkCnt with number of samples */ blkCnt = blockSize2; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ k = srcBLen >> 2U; while (k > 0U) { /* Perform the multiply-accumulates */ sum += (q63_t) *px++ * (*py--); sum += (q63_t) *px++ * (*py--); sum += (q63_t) *px++ * (*py--); sum += (q63_t) *px++ * (*py--); /* Decrement loop counter */ k--; } /* Loop unrolling: Compute remaining outputs */ k = srcBLen % 0x4U; #else /* Initialize blkCnt with number of samples */ k = srcBLen; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (k > 0U) { /* Perform the multiply-accumulate */ sum += (q63_t) *px++ * *py--; /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q31_t) (sum >> 31); /* Increment MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pSrc1 + count; py = pSrc2; /* Decrement loop counter */ blkCnt--; } } else { /* If the srcBLen is not a multiple of 4, * the blockSize2 loop cannot be unrolled by 4 */ blkCnt = (uint32_t) blockSize2; while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* srcBLen number of MACS should be performed */ k = srcBLen; while (k > 0U) { /* Perform the multiply-accumulate */ sum += (q63_t) *px++ * *py--; /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q31_t) (sum >> 31); /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pSrc1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } } /* -------------------------- * Initializations of stage3 * -------------------------*/ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] * .... * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] * sum += x[srcALen-1] * y[srcBLen-1] */ /* In this stage the MAC operations are decreased by 1 for every iteration. The blockSize3 variable holds the number of MAC operations performed */ count = srcBLen - 1U; /* Working pointer of inputA */ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); px = pSrc1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); py = pSrc2; /* ------------------- * Stage3 process * ------------------*/ while (blockSize3 > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ k = count >> 2U; while (k > 0U) { /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ sum += (q63_t) *px++ * *py--; /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ sum += (q63_t) *px++ * *py--; /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ sum += (q63_t) *px++ * *py--; /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ sum += (q63_t) *px++ * *py--; /* Decrement loop counter */ k--; } /* Loop unrolling: Compute remaining outputs */ k = count % 0x4U; #else /* Initialize blkCnt with number of samples */ k = count; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (k > 0U) { /* Perform the multiply-accumulate */ /* sum += x[srcALen-1] * y[srcBLen-1] */ sum += (q63_t) *px++ * *py--; /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q31_t) (sum >> 31); /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pSrc2; /* Decrement MAC count */ count--; /* Decrement the loop counter */ blockSize3--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); #else /* alternate version for CM0_FAMILY */ const q31_t *pIn1 = pSrcA; /* InputA pointer */ const q31_t *pIn2 = pSrcB; /* InputB pointer */ q63_t sum; /* Accumulator */ uint32_t i, j; /* Loop counters */ arm_status status; /* Status of Partial convolution */ /* Check for range of output samples to be calculated */ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* Loop to calculate convolution for output length number of values */ for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++) { /* Initialize sum with zero to carry on MAC operations */ sum = 0; /* Loop to perform MAC operations according to convolution equation */ for (j = 0U; j <= i; j++) { /* Check the array limitations */ if (((i - j) < srcBLen) && (j < srcALen)) { /* z[i] += x[i-j] * y[j] */ sum += ((q63_t) pIn1[j] * pIn2[i - j]); } } /* Store the output in the destination buffer */ pDst[i] = (q31_t) (sum >> 31U); } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); #endif /* #if !defined(ARM_MATH_CM0_FAMILY) */ } /** @} end of PartialConv group */