/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_iir_lattice_q31.c * Description: Q31 IIR Lattice filter processing function * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupFilters */ /** @addtogroup IIR_Lattice @{ */ /** @brief Processing function for the Q31 IIR lattice filter. @param[in] S points to an instance of the Q31 IIR lattice structure @param[in] pSrc points to the block of input data @param[out] pDst points to the block of output data @param[in] blockSize number of samples to process @return none @par Scaling and Overflow Behavior The function is implemented using an internal 64-bit accumulator. The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. Thus, if the accumulator result overflows it wraps around rather than clip. In order to avoid overflows completely the input signal must be scaled down by 2*log2(numStages) bits. After all multiply-accumulates are performed, the 2.62 accumulator is saturated to 1.32 format and then truncated to 1.31 format. */ void arm_iir_lattice_q31( const arm_iir_lattice_instance_q31 * S, const q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { q31_t *pState = S->pState; /* State pointer */ q31_t *pStateCur; /* State current pointer */ q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */ q63_t acc; /* Accumlator */ q31_t *px1, *px2, *pk, *pv; /* Temporary pointers for state and coef */ uint32_t numStages = S->numStages; /* Number of stages */ uint32_t blkCnt, tapCnt; /* Temporary variables for counts */ /* initialise loop count */ blkCnt = blockSize; #if defined (ARM_MATH_DSP) /* Sample processing */ while (blkCnt > 0U) { /* Read Sample from input buffer */ /* fN(n) = x(n) */ fcurr = *pSrc++; /* Initialize Ladder coeff pointer */ pv = &S->pvCoeffs[0]; /* Initialize Reflection coeff pointer */ pk = &S->pkCoeffs[0]; /* Initialize state read pointer */ px1 = pState; /* Initialize state write pointer */ px2 = pState; /* Set accumulator to zero */ acc = 0; /* Process sample for first tap */ gcurr = *px1++; /* fN-1(n) = fN(n) - kN * gN-1(n-1) */ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31)); /* gN(n) = kN * fN-1(n) + gN-1(n-1) */ gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31)); /* write gN-1(n-1) into state for next sample processing */ *px2++ = gnext; /* y(n) += gN(n) * vN */ acc += ((q63_t) gnext * *pv++); /* Update f values for next coefficient processing */ fcurr = fnext; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 taps at a time. */ tapCnt = (numStages - 1U) >> 2U; while (tapCnt > 0U) { /* Process sample for 2nd, 6th ...taps */ /* Read gN-2(n-1) from state buffer */ gcurr = *px1++; /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31)); /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */ gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31)); /* y(n) += gN-1(n) * vN-1 */ /* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */ acc += ((q63_t) gnext * *pv++); /* write gN-1(n) into state for next sample processing */ *px2++ = gnext; /* Process sample for 3nd, 7th ...taps */ /* Read gN-3(n-1) from state buffer */ gcurr = *px1++; /* Process sample for 3rd, 7th .. taps */ /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */ fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk )) >> 31)); /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */ gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31)); /* y(n) += gN-2(n) * vN-2 */ /* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */ acc += ((q63_t) gnext * *pv++); /* write gN-2(n) into state for next sample processing */ *px2++ = gnext; /* Process sample for 4th, 8th ...taps */ /* Read gN-4(n-1) from state buffer */ gcurr = *px1++; /* Process sample for 4th, 8th .. taps */ /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31)); /* gN-3(n) = kN-3 * fN-4(n) + gN-4(n-1) */ gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31)); /* y(n) += gN-3(n) * vN-3 */ /* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */ acc += ((q63_t) gnext * *pv++); /* write gN-3(n) into state for next sample processing */ *px2++ = gnext; /* Process sample for 5th, 9th ...taps */ /* Read gN-5(n-1) from state buffer */ gcurr = *px1++; /* Process sample for 5th, 9th .. taps */ /* fN-5(n) = fN-4(n) - kN-4 * gN-1(n-1) */ fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk )) >> 31)); /* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */ gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31)); /* y(n) += gN-4(n) * vN-4 */ /* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */ acc += ((q63_t) gnext * *pv++); /* write gN-4(n) into state for next sample processing */ *px2++ = gnext; /* Decrement loop counter */ tapCnt--; } fnext = fcurr; /* Loop unrolling: Compute remaining taps */ tapCnt = (numStages - 1U) % 0x4U; #else /* Initialize blkCnt with number of samples */ tapCnt = (numStages - 1U); #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (tapCnt > 0U) { gcurr = *px1++; /* Process sample for last taps */ fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk )) >> 31)); gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31)); /* Output samples for last taps */ acc += ((q63_t) gnext * *pv++); *px2++ = gnext; fcurr = fnext; /* Decrement loop counter */ tapCnt--; } /* y(n) += g0(n) * v0 */ acc += ((q63_t) fnext * *pv++); *px2++ = fnext; /* write out into pDst */ *pDst++ = (q31_t) (acc >> 31U); /* Advance the state pointer by 4 to process the next group of 4 samples */ pState = pState + 1U; /* Decrement loop counter */ blkCnt--; } /* Processing is complete. Now copy last S->numStages samples to start of the buffer for the preperation of next frame process */ /* Points to the start of the state buffer */ pStateCur = &S->pState[0]; pState = &S->pState[blockSize]; /* Copy data */ #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 taps at a time. */ tapCnt = numStages >> 2U; while (tapCnt > 0U) { *pStateCur++ = *pState++; *pStateCur++ = *pState++; *pStateCur++ = *pState++; *pStateCur++ = *pState++; /* Decrement loop counter */ tapCnt--; } /* Loop unrolling: Compute remaining taps */ tapCnt = numStages % 0x4U; #else /* Initialize blkCnt with number of samples */ tapCnt = (numStages - 1U); #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (tapCnt > 0U) { *pStateCur++ = *pState++; /* Decrement loop counter */ tapCnt--; } #else /* #if defined (ARM_MATH_DSP) */ /* Sample processing */ while (blkCnt > 0U) { /* Read Sample from input buffer */ /* fN(n) = x(n) */ fcurr = *pSrc++; /* Initialize Ladder coeff pointer */ pv = &S->pvCoeffs[0]; /* Initialize Reflection coeff pointer */ pk = &S->pkCoeffs[0]; /* Initialize state read pointer */ px1 = pState; /* Initialize state write pointer */ px2 = pState; /* Set accumulator to zero */ acc = 0; tapCnt = numStages; while (tapCnt > 0U) { gcurr = *px1++; /* Process sample */ /* fN-1(n) = fN(n) - kN * gN-1(n-1) */ fnext = clip_q63_to_q31(((q63_t) fcurr - ((q31_t) (((q63_t) gcurr * (*pk )) >> 31)))); /* gN(n) = kN * fN-1(n) + gN-1(n-1) */ gnext = clip_q63_to_q31(((q63_t) gcurr + ((q31_t) (((q63_t) fnext * (*pk++)) >> 31)))); /* Output samples */ /* y(n) += gN(n) * vN */ acc += ((q63_t) gnext * *pv++); /* write gN-1(n-1) into state for next sample processing */ *px2++ = gnext; /* Update f values for next coefficient processing */ fcurr = fnext; tapCnt--; } /* y(n) += g0(n) * v0 */ acc += ((q63_t) fnext * *pv++); *px2++ = fnext; /* write out into pDst */ *pDst++ = (q31_t) (acc >> 31U); /* Advance the state pointer by 1 to process the next group of samples */ pState = pState + 1U; /* Decrement loop counter */ blkCnt--; } /* Processing is complete. Now copy last S->numStages samples to start of the buffer for the preperation of next frame process */ /* Points to the start of the state buffer */ pStateCur = &S->pState[0]; pState = &S->pState[blockSize]; tapCnt = numStages; /* Copy data */ while (tapCnt > 0U) { *pStateCur++ = *pState++; /* Decrement loop counter */ tapCnt--; } #endif /* #if defined (ARM_MATH_DSP) */ } /** @} end of IIR_Lattice group */