/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_fir_lattice_q31.c * Description: Q31 FIR lattice filter processing function * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupFilters */ /** @addtogroup FIR_Lattice @{ */ /** @brief Processing function for the Q31 FIR lattice filter. @param[in] S points to an instance of the Q31 FIR lattice structure @param[in] pSrc points to the block of input data @param[out] pDst points to the block of output data @param[in] blockSize number of samples to process @return none @par Scaling and Overflow Behavior In order to avoid overflows the input signal must be scaled down by 2*log2(numStages) bits. */ void arm_fir_lattice_q31( const arm_fir_lattice_instance_q31 * S, const q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { q31_t *pState = S->pState; /* State pointer */ const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q31_t *px; /* Temporary state pointer */ const q31_t *pk; /* Temporary coefficient pointer */ uint32_t numStages = S->numStages; /* Number of stages in the filter */ uint32_t blkCnt, stageCnt; /* Loop counters */ q31_t fcurr0, fnext0, gnext0, gcurr0; /* Temporary variables */ #if (1) //#if !defined(ARM_MATH_CM0_FAMILY) #if defined (ARM_MATH_LOOPUNROLL) q31_t fcurr1, fnext1, gnext1; /* Temporary variables for second sample in loop unrolling */ q31_t fcurr2, fnext2, gnext2; /* Temporary variables for third sample in loop unrolling */ q31_t fcurr3, fnext3, gnext3; /* Temporary variables for fourth sample in loop unrolling */ #endif gcurr0 = 0; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = blockSize >> 2U; while (blkCnt > 0U) { /* Read two samples from input buffer */ /* f0(n) = x(n) */ fcurr0 = *pSrc++; fcurr1 = *pSrc++; /* Initialize state pointer */ px = pState; /* Initialize coeff pointer */ pk = pCoeffs; /* Read g0(n-1) from state buffer */ gcurr0 = *px; /* Process first sample for first tap */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext0 << 1U) + fcurr0; /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* Process second sample for first tap */ fnext1 = (q31_t) (((q63_t) fcurr0 * (*pk)) >> 32U); fnext1 = (fnext1 << 1U) + fcurr1; gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk)) >> 32U); gnext1 = (gnext1 << 1U) + fcurr0; /* Read next two samples from input buffer */ /* f0(n+2) = x(n+2) */ fcurr2 = *pSrc++; fcurr3 = *pSrc++; /* Process third sample for first tap */ fnext2 = (q31_t) (((q63_t) fcurr1 * (*pk)) >> 32U); fnext2 = (fnext2 << 1U) + fcurr2; gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 32U); gnext2 = (gnext2 << 1U) + fcurr1; /* Process fourth sample for first tap */ fnext3 = (q31_t) (((q63_t) fcurr2 * (*pk )) >> 32U); fnext3 = (fnext3 << 1U) + fcurr3; gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk++)) >> 32U); gnext3 = (gnext3 << 1U) + fcurr2; /* Copy only last input sample into the state buffer which will be used for next samples processing */ *px++ = fcurr3; /* Update of f values for next coefficient set processing */ fcurr0 = fnext0; fcurr1 = fnext1; fcurr2 = fnext2; fcurr3 = fnext3; /* Loop unrolling. Process 4 taps at a time . */ stageCnt = (numStages - 1U) >> 2U; /* Loop over the number of taps. Unroll by a factor of 4. Repeat until we've computed numStages-3 coefficients. */ /* Process 2nd, 3rd, 4th and 5th taps ... here */ while (stageCnt > 0U) { /* Read g1(n-1), g3(n-1) .... from state */ gcurr0 = *px; /* save g1(n) in state buffer */ *px++ = gnext3; /* Process first sample for 2nd, 6th .. tap */ /* Sample processing for K2, K6.... */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext0 << 1U) + fcurr0; /* Process second sample for 2nd, 6th .. tap */ /* for sample 2 processing */ fnext1 = (q31_t) (((q63_t) gnext0 * (*pk)) >> 32U); fnext1 = (fnext1 << 1U) + fcurr1; /* Process third sample for 2nd, 6th .. tap */ fnext2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 32U); fnext2 = (fnext2 << 1U) + fcurr2; /* Process fourth sample for 2nd, 6th .. tap */ fnext3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 32U); fnext3 = (fnext3 << 1U) + fcurr3; /* g1(n) = f0(n) * K1 + g0(n-1) */ /* Calculation of state values for next stage */ gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 32U); gnext3 = (gnext3 << 1U) + gnext2; gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 32U); gnext2 = (gnext2 << 1U) + gnext1; gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk)) >> 32U); gnext1 = (gnext1 << 1U) + gnext0; gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* Read g2(n-1), g4(n-1) .... from state */ gcurr0 = *px; /* save g1(n) in state buffer */ *px++ = gnext3; /* Sample processing for K3, K7.... */ /* Process first sample for 3rd, 7th .. tap */ /* f3(n) = f2(n) + K3 * g2(n-1) */ fcurr0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fcurr0 = (fcurr0 << 1U) + fnext0; /* Process second sample for 3rd, 7th .. tap */ fcurr1 = (q31_t) (((q63_t) gnext0 * (*pk)) >> 32U); fcurr1 = (fcurr1 << 1U) + fnext1; /* Process third sample for 3rd, 7th .. tap */ fcurr2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 32U); fcurr2 = (fcurr2 << 1U) + fnext2; /* Process fourth sample for 3rd, 7th .. tap */ fcurr3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 32U); fcurr3 = (fcurr3 << 1U) + fnext3; /* Calculation of state values for next stage */ /* g3(n) = f2(n) * K3 + g2(n-1) */ gnext3 = (q31_t) (((q63_t) fnext3 * (*pk)) >> 32U); gnext3 = (gnext3 << 1U) + gnext2; gnext2 = (q31_t) (((q63_t) fnext2 * (*pk)) >> 32U); gnext2 = (gnext2 << 1U) + gnext1; gnext1 = (q31_t) (((q63_t) fnext1 * (*pk)) >> 32U); gnext1 = (gnext1 << 1U) + gnext0; gnext0 = (q31_t) (((q63_t) fnext0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* Read g1(n-1), g3(n-1) .... from state */ gcurr0 = *px; /* save g1(n) in state buffer */ *px++ = gnext3; /* Sample processing for K4, K8.... */ /* Process first sample for 4th, 8th .. tap */ /* f4(n) = f3(n) + K4 * g3(n-1) */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext0 << 1U) + fcurr0; /* Process second sample for 4th, 8th .. tap */ /* for sample 2 processing */ fnext1 = (q31_t) (((q63_t) gnext0 * (*pk)) >> 32U); fnext1 = (fnext1 << 1U) + fcurr1; /* Process third sample for 4th, 8th .. tap */ fnext2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 32U); fnext2 = (fnext2 << 1U) + fcurr2; /* Process fourth sample for 4th, 8th .. tap */ fnext3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 32U); fnext3 = (fnext3 << 1U) + fcurr3; /* g4(n) = f3(n) * K4 + g3(n-1) */ /* Calculation of state values for next stage */ gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 32U); gnext3 = (gnext3 << 1U) + gnext2; gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 32U); gnext2 = (gnext2 << 1U) + gnext1; gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk)) >> 32U); gnext1 = (gnext1 << 1U) + gnext0; gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* Read g2(n-1), g4(n-1) .... from state */ gcurr0 = *px; /* save g4(n) in state buffer */ *px++ = gnext3; /* Sample processing for K5, K9.... */ /* Process first sample for 5th, 9th .. tap */ /* f5(n) = f4(n) + K5 * g4(n-1) */ fcurr0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fcurr0 = (fcurr0 << 1U) + fnext0; /* Process second sample for 5th, 9th .. tap */ fcurr1 = (q31_t) (((q63_t) gnext0 * (*pk)) >> 32U); fcurr1 = (fcurr1 << 1U) + fnext1; /* Process third sample for 5th, 9th .. tap */ fcurr2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 32U); fcurr2 = (fcurr2 << 1U) + fnext2; /* Process fourth sample for 5th, 9th .. tap */ fcurr3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 32U); fcurr3 = (fcurr3 << 1U) + fnext3; /* Calculation of state values for next stage */ /* g5(n) = f4(n) * K5 + g4(n-1) */ gnext3 = (q31_t) (((q63_t) fnext3 * (*pk)) >> 32U); gnext3 = (gnext3 << 1U) + gnext2; gnext2 = (q31_t) (((q63_t) fnext2 * (*pk)) >> 32U); gnext2 = (gnext2 << 1U) + gnext1; gnext1 = (q31_t) (((q63_t) fnext1 * (*pk)) >> 32U); gnext1 = (gnext1 << 1U) + gnext0; gnext0 = (q31_t) (((q63_t) fnext0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; stageCnt--; } /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */ stageCnt = (numStages - 1U) % 0x4U; while (stageCnt > 0U) { gcurr0 = *px; /* save g value in state buffer */ *px++ = gnext3; /* Process four samples for last three taps here */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext0 << 1U) + fcurr0; fnext1 = (q31_t) (((q63_t) gnext0 * (*pk)) >> 32U); fnext1 = (fnext1 << 1U) + fcurr1; fnext2 = (q31_t) (((q63_t) gnext1 * (*pk)) >> 32U); fnext2 = (fnext2 << 1U) + fcurr2; fnext3 = (q31_t) (((q63_t) gnext2 * (*pk)) >> 32U); fnext3 = (fnext3 << 1U) + fcurr3; /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext3 = (q31_t) (((q63_t) fcurr3 * (*pk)) >> 32U); gnext3 = (gnext3 << 1U) + gnext2; gnext2 = (q31_t) (((q63_t) fcurr2 * (*pk)) >> 32U); gnext2 = (gnext2 << 1U) + gnext1; gnext1 = (q31_t) (((q63_t) fcurr1 * (*pk)) >> 32U); gnext1 = (gnext1 << 1U) + gnext0; gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* Update of f values for next coefficient set processing */ fcurr0 = fnext0; fcurr1 = fnext1; fcurr2 = fnext2; fcurr3 = fnext3; stageCnt--; } /* The results in the 4 accumulators, store in the destination buffer. */ /* y(n) = fN(n) */ *pDst++ = fcurr0; *pDst++ = fcurr1; *pDst++ = fcurr2; *pDst++ = fcurr3; blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = blockSize % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* f0(n) = x(n) */ fcurr0 = *pSrc++; /* Initialize state pointer */ px = pState; /* Initialize coeff pointer */ pk = pCoeffs; /* read g2(n) from state buffer */ gcurr0 = *px; /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext0 << 1U) + fcurr0; /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* save g1(n) in state buffer */ *px++ = fcurr0; /* f1(n) is saved in fcurr0 for next stage processing */ fcurr0 = fnext0; stageCnt = (numStages - 1U); /* stage loop */ while (stageCnt > 0U) { /* read g2(n) from state buffer */ gcurr0 = *px; /* save g1(n) in state buffer */ *px++ = gnext0; /* Sample processing for K2, K3.... */ /* f2(n) = f1(n) + K2 * g1(n-1) */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext0 << 1U) + fcurr0; /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* f1(n) is saved in fcurr0 for next stage processing */ fcurr0 = fnext0; stageCnt--; } /* y(n) = fN(n) */ *pDst++ = fcurr0; blkCnt--; } #else /* alternate version for CM0_FAMILY */ blkCnt = blockSize; while (blkCnt > 0U) { /* f0(n) = x(n) */ fcurr0 = *pSrc++; /* Initialize state pointer */ px = pState; /* Initialize coeff pointer */ pk = pCoeffs; /* read g0(n-1) from state buffer */ gcurr0 = *px; /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext << 1U) + fcurr0; /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* save f0(n) in state buffer */ *px++ = fcurr0; /* f1(n) is saved in fcurr for next stage processing */ fcurr0 = fnext0; stageCnt = (numStages - 1U); /* stage loop */ while (stageCnt > 0U) { /* read g1(n-1) from state buffer */ gcurr0 = *px; /* save g0(n-1) in state buffer */ *px++ = gnext0; /* Sample processing for K2, K3.... */ /* f2(n) = f1(n) + K2 * g1(n-1) */ fnext0 = (q31_t) (((q63_t) gcurr0 * (*pk)) >> 32U); fnext0 = (fnext0 << 1U) + fcurr0; /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext0 = (q31_t) (((q63_t) fcurr0 * (*pk++)) >> 32U); gnext0 = (gnext0 << 1U) + gcurr0; /* f1(n) is saved in fcurr0 for next stage processing */ fcurr0 = fnext0; stageCnt--; } /* y(n) = fN(n) */ *pDst++ = fcurr0; blkCnt--; } #endif /* #if !defined(ARM_MATH_CM0_FAMILY) */ } /** @} end of FIR_Lattice group */