/*! ---------------------------------------------------------------------------- * @file main.c * @brief Double-sided two-way ranging (DS TWR) initiator example code * * * * @attention * * Copyright 2015 (c) Decawave Ltd, Dublin, Ireland. * * All rights reserved. * * @author Decawave */ #include #include "dw_app.h" #include "deca_device_api.h" #include "deca_regs.h" #include "dw_driver.h" #include "Spi.h" #include "led.h" #include "serial_at_cmd_app.h" #include "Usart.h" #include "global_param.h" #include "filters.h" #include #include "beep.h" #include "modbus.h" /*------------------------------------ Marcos ------------------------------------------*/ /* Inter-ranging delay period, in milliseconds. */ #define RNG_DELAY_MS 100 /* Default antenna delay values for 64 MHz PRF. See NOTE 1 below. */ #define TX_ANT_DLY 0 #define RX_ANT_DLY 32899 /* UWB microsecond (uus) to device time unit (dtu, around 15.65 ps) conversion factor. * 1 uus = 512 / 499.2 µs and 1 µs = 499.2 * 128 dtu. */ #define UUS_TO_DWT_TIME 65536 /* Delay between frames, in UWB microseconds. See NOTE 4 below. */ /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ #define POLL_TX_TO_RESP_RX_DLY_UUS 150 /* This is the delay from Frame RX timestamp to TX reply timestamp used for calculating/setting the DW1000's delayed TX function. This includes the * frame length of approximately 2.66 ms with above configuration. */ #define RESP_RX_TO_FINAL_TX_DLY_UUS 850 /* Receive response timeout. See NOTE 5 below. */ #define RESP_RX_TIMEOUT_UUS 600 #define POLL_RX_TO_RESP_TX_DLY_UUS 420 /* This is the delay from the end of the frame transmission to the enable of the receiver, as programmed for the DW1000's wait for response feature. */ #define RESP_TX_TO_FINAL_RX_DLY_UUS 200 /* Receive final timeout. See NOTE 5 below. */ #define FINAL_RX_TIMEOUT_UUS 4300 #define SPEED_OF_LIGHT 299702547 /* Indexes to access some of the fields in the frames defined above. */ #define FINAL_MSG_POLL_TX_TS_IDX 10 #define FINAL_MSG_RESP_RX_TS_IDX 14 #define FINAL_MSG_FINAL_TX_TS_IDX 18 #define FINAL_MSG_TS_LEN 4 #define SYNC_SEQ_IDX 5 //common #define GROUP_ID_IDX 0 #define ANCHOR_ID_IDX 1 #define TAG_ID_IDX 5 #define MESSAGE_TYPE_IDX 9 //Poll #define ANC_TYPE_IDX 14 #define BATTARY_IDX 15 #define BUTTON_IDX 16 #define SEQUENCE_IDX 17 //respose #define DIST_IDX 10 #define ANCTIMEMS 14 #define ANCTIMEUS 16 #define ANCSEND_INTERVAL 18 #define POLL 0x01 #define RESPONSE 0x02 #define FINAL 0x03 #define SYNC 0x04 /*------------------------------------ Variables ------------------------------------------*/ /* Default communication configuration. We use here EVK1000's default mode (mode 3). */ static dwt_config_t config = { 2, /* Channel number. */ DWT_PRF_64M, /* Pulse repetition frequency. */ DWT_PLEN_128, /* Preamble length. */ DWT_PAC8, /* Preamble acquisition chunk size. Used in RX only. */ 9, /* TX preamble code. Used in TX only. */ 9, /* RX preamble code. Used in RX only. */ 1, /* Use non-standard SFD (Boolean) */ DWT_BR_6M8, /* Data rate. */ DWT_PHRMODE_STD, /* PHY header mode. */ (129 + 8 - 8) /* SFD timeout (preamble length + 1 + SFD length - PAC size). Used in RX only. */ }; /* Frames used in the ranging process. See NOTE 2 below. */ static uint8_t tx_poll_msg[20] = {0}; static uint8_t tx_sync_msg[14] = {0}; //static uint8_t rx_resp_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'V', 'E', 'W', 'A', 0x10, 0x02, 0, 0, 0, 0}; static uint8_t tx_final_msg[24] = {0}; //static uint8_t rx_poll_msg[] = {0x00, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x21, 0, 0}; static uint8_t tx_resp_msg[22] = {0}; //static uint8_t rx_final_msg[] = {0x41, 0x88, 0, 0xCA, 0xDE, 'W', 'A', 'V', 'E', 0x23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; /* Frame sequence number, incremented after each transmission. */ static uint32_t frame_seq_nb = 0,frame_seq_nb2=0; /* Hold copy of status register state here for reference, so reader can examine it at a breakpoint. */ static uint32_t status_reg = 0; /* Buffer to store received response message. * Its size is adjusted to longest frame that this example code is supposed to handle. */ #define RX_BUF_LEN 24 static uint8_t rx_buffer[RX_BUF_LEN]; /* Time-stamps of frames transmission/reception, expressed in device time units. * As they are 40-bit wide, we need to define a 64-bit int type to handle them. */ static uint64_t poll_tx_ts; static uint64_t resp_rx_ts; static uint64_t final_tx_ts; /* Length of the common part of the message (up to and including the function code, see NOTE 2 below). */ static uint64_t poll_rx_ts; static uint64_t resp_tx_ts; static uint64_t final_rx_ts; static double tof; int32_t anchor_dist_last_frm[TAG_NUM_IN_SYS],his_dist[TAG_NUM_IN_SYS]; ; uint32_t tag_id = 0; uint32_t tag_id_recv = 0; uint8_t random_delay_tim = 0; double distance, dist_no_bias, dist_cm; uint32_t g_UWB_com_interval = 0; float dis_after_filter; //µ±Ç°¾àÀëÖµ LPFilter_Frac* p_Dis_Filter; //²â¾àÓõĵÍͨÂ˲¨Æ÷ int32_t g_Tagdist[TAG_NUM_IN_SYS]; uint8_t g_flag_Taggetdist[256]; /*------------------------------------ Functions ------------------------------------------*/ /*! ------------------------------------------------------------------------------------------------------------------ * @fn get_tx_timestamp_u64() * * @brief Get the TX time-stamp in a 64-bit variable. * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! * * @param none * * @return 64-bit value of the read time-stamp. */ static uint64_t get_tx_timestamp_u64(void) { uint8_t ts_tab[5]; uint64_t ts = 0; int i; dwt_readtxtimestamp(ts_tab); for (i = 4; i >= 0; i--) { ts <<= 8; ts |= ts_tab[i]; } return ts; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn get_rx_timestamp_u64() * * @brief Get the RX time-stamp in a 64-bit variable. * /!\ This function assumes that length of time-stamps is 40 bits, for both TX and RX! * * @param none * * @return 64-bit value of the read time-stamp. */ static uint64_t get_rx_timestamp_u64(void) { uint8_t ts_tab[5]; uint64_t ts = 0; int i; dwt_readrxtimestamp(ts_tab); for (i = 4; i >= 0; i--) { ts <<= 8; ts |= ts_tab[i]; } return ts; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn final_msg_set_ts() * * @brief Fill a given timestamp field in the final message with the given value. In the timestamp fields of the final * message, the least significant byte is at the lower address. * * @param ts_field pointer on the first byte of the timestamp field to fill * ts timestamp value * * @return none */ static void final_msg_set_ts(uint8_t *ts_field, uint64_t ts) { int i; for (i = 0; i < FINAL_MSG_TS_LEN; i++) { ts_field[i] = (uint8_t) ts; ts >>= 8; } } static void final_msg_get_ts(const uint8_t *ts_field, uint32_t *ts) { int i; *ts = 0; for (i = 0; i < FINAL_MSG_TS_LEN; i++) { *ts += ts_field[i] << (i * 8); } } void TagDistClear(void) { static uint16_t clear_judge_cnt; uint16_t i; if(clear_judge_cnt++>1000) //É趨1S·ÖƵ£¬Ã¿Ãë½øÒ»´Î¡£Åжϱê־λ´óÓÚµÈÓÚ2£¬2sûÊÕµ½Êý¾Ý¾Í°ÑÊý¾Ý±ä³É0xffff£¬²»´¥·¢¾¯±¨¡£ { clear_judge_cnt=0; for(i=0;i<255;i++) { g_flag_Taggetdist[i]++; if(g_flag_Taggetdist[i]>=20) { g_Tagdist[i]=0xffff; } } } } void Dw1000_Init(void) { /* Reset and initialise DW1000. * For initialisation, DW1000 clocks must be temporarily set to crystal speed. After initialisation SPI rate can be increased for optimum * performance. */ Reset_DW1000();//ÖØÆôDW1000 /* Target specific drive of RSTn line into DW1000 low for a period. */ Spi_ChangePrescaler(SPIx_PRESCALER_SLOW); //ÉèÖÃΪ¿ìËÙģʽ dwt_initialise(DWT_LOADUCODE);//³õʼ»¯DW1000 Spi_ChangePrescaler(SPIx_PRESCALER_FAST); //ÉèÖÃΪ¿ìËÙģʽ /* Configure DW1000. See NOTE 6 below. */ dwt_configure(&config);//ÅäÖÃDW1000 /* Apply default antenna delay value. See NOTE 1 below. */ dwt_setrxantennadelay(RX_ANT_DLY); //ÉèÖýÓÊÕÌìÏßÑÓ³Ù dwt_settxantennadelay(TX_ANT_DLY); //ÉèÖ÷¢ÉäÌìÏßÑÓ³Ù /* Set expected response's delay and timeout. See NOTE 4 and 5 below. * As this example only handles one incoming frame with always the same delay and timeout, those values can be set here once for all. */ //ÉèÖýÓÊÕ³¬Ê±Ê±¼ä } void Dw1000_App_Init(void) { //g_com_map[DEV_ID] = 0x0b; tx_poll_msg[MESSAGE_TYPE_IDX]=POLL; tx_resp_msg[MESSAGE_TYPE_IDX]=RESPONSE; tx_final_msg[MESSAGE_TYPE_IDX]=FINAL; tx_sync_msg[MESSAGE_TYPE_IDX]=SYNC; memcpy(&tx_poll_msg[GROUP_ID_IDX], &group_id, 1); memcpy(&tx_final_msg[GROUP_ID_IDX], &group_id, 1); memcpy(&tx_resp_msg[GROUP_ID_IDX], &group_id, 1); memcpy(&tx_poll_msg[TAG_ID_IDX], &dev_id, 4); memcpy(&tx_final_msg[TAG_ID_IDX], &dev_id, 4); memcpy(&tx_resp_msg[ANCHOR_ID_IDX], &dev_id, 4); memcpy(&tx_sync_msg[ANCHOR_ID_IDX], &dev_id, 4); } uint16_t Checksum_u16(uint8_t* pdata, uint32_t len) { uint16_t sum = 0; uint32_t i; for(i=0; i20) // NVIC_SystemReset(); // IdleTask(); }; /* Increment frame sequence number after transmission of the poll message (modulo 256). */ if(status_reg==0xffffffff) { // NVIC_SystemReset(); } if (status_reg & SYS_STATUS_RXFCG)//Èç¹û³É¹¦½ÓÊÕ { /* Clear good RX frame event and TX frame sent in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXFCG | SYS_STATUS_TXFRS);//Çå³þ¼Ä´æÆ÷±ê־λ /* A frame has been received, read it into the local buffer. */ frame_len = dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXFLEN_MASK; //»ñµÃ½ÓÊÕµ½µÄÊý¾Ý³¤¶È dwt_readrxdata(rx_buffer, frame_len, 0); //¶ÁÈ¡½ÓÊÕÊý¾Ý /* Check that the frame is the expected response from the companion "DS TWR responder" example. * As the sequence number field of the frame is not relevant, it is cleared to simplify the validation of the frame. */ if (rx_buffer[GROUP_ID_IDX] == group_id&&rx_buffer[MESSAGE_TYPE_IDX] == RESPONSE&&!memcmp(&rx_buffer[TAG_ID_IDX],&dev_id,4)) //ÅжϽÓÊÕµ½µÄÊý¾ÝÊÇ·ñÊÇresponseÊý¾Ý { uint16_t anc_id_recv,current_count,rec_com_interval; /* Retrieve poll transmission and response reception timestamp. */ poll_tx_ts = get_tx_timestamp_u64(); //»ñµÃPOLL·¢ËÍʱ¼äT1 resp_rx_ts = get_rx_timestamp_u64(); //»ñµÃRESPONSE½ÓÊÕʱ¼äT4 if(getsync_flag==0&&g_com_map[DEV_ROLE]) { getsync_flag=1; memcpy(&sync_timer,&rx_buffer[ANCTIMEMS],2); memcpy(&tmp_time,&rx_buffer[ANCTIMEUS],2); tmp_time=tmp_time+450; if(tmp_time>999) { tmp_time-=999; sync_timer++; if(sync_timer>=1010) {sync_timer=0;} } // TIM3->CNT=tmp_time; } memcpy(&hex_dist2, &rx_buffer[DIST_IDX], 4); memcpy(&tx_final_msg[ANCHOR_ID_IDX], &rx_buffer[ANCHOR_ID_IDX], 4); memcpy(&rec_com_interval,&rx_buffer[ANCSEND_INTERVAL], 2); if(rec_com_interval>4&&rec_com_interval!=g_com_map[COM_INTERVAL]) { g_com_map[COM_INTERVAL]=rec_com_interval; save_com_map_to_flash(); delay_ms(100); SCB->AIRCR = 0X05FA0000|(unsigned int)0x04; //Èí¸´Î»»Øµ½bootloader } /* Compute final message transmission time. See NOTE 9 below. */ final_tx_time = (resp_rx_ts + (RESP_RX_TO_FINAL_TX_DLY_UUS * UUS_TO_DWT_TIME)) >> 8;//¼ÆËãfinal°ü·¢ËÍʱ¼ä£¬T5=T4+Treply2 dwt_setdelayedtrxtime(final_tx_time);//ÉèÖÃfinal°ü·¢ËÍʱ¼äT5 /* Final TX timestamp is the transmission time we programmed plus the TX antenna delay. */ final_tx_ts = (((uint64_t)(final_tx_time & 0xFFFFFFFE)) << 8) + TX_ANT_DLY;//final°üʵ¼Ê·¢ËÍʱ¼äÊǼÆËãʱ¼ä¼ÓÉÏ·¢ËÍÌìÏßdelay /* Write all timestamps in the final message. See NOTE 10 below. */ final_msg_set_ts(&tx_final_msg[FINAL_MSG_POLL_TX_TS_IDX], poll_tx_ts);//½«T1£¬T4£¬T5дÈë·¢ËÍÊý¾Ý final_msg_set_ts(&tx_final_msg[FINAL_MSG_RESP_RX_TS_IDX], resp_rx_ts); final_msg_set_ts(&tx_final_msg[FINAL_MSG_FINAL_TX_TS_IDX], final_tx_ts); /* Write and send final message. See NOTE 7 below. */ dwt_writetxdata(sizeof(tx_final_msg), tx_final_msg, 0);//½«·¢ËÍÊý¾ÝдÈëDW1000 dwt_writetxfctrl(sizeof(tx_final_msg), 0);//É趨·¢ËÍÊý¾Ý³¤¶È result=dwt_starttx(DWT_START_TX_DELAYED);//É趨ΪÑÓ³Ù·¢ËÍ ancsync_time=((sync_timer+0)*1000+tmp_time); current_count=HAL_LPTIM_ReadCounter(&hlptim1); // count_offset=sync_count-current_count-143; // current_slottimes=(ancsync_time-10000)/(g_com_map[COM_INTERVAL]*1000); nextpoll_delaytime=tyncpoll_time*1000+g_com_map[COM_INTERVAL]*1000-((ancsync_time-10000)%(g_com_map[COM_INTERVAL]*1000))-5150; if(abs(ancsync_time-910000)<1000) { nextpoll_delaytime+=10000; } if(nextpoll_delaytime<2000) { nextpoll_delaytime+=g_com_map[COM_INTERVAL]*1000; } lastpoll_count= current_count+(nextpoll_delaytime)/LPTIMER_LSB; if(lastpoll_count>LPTIMER_1S_COUNT) lastpoll_count-=LPTIMER_1S_COUNT; __HAL_LPTIM_COMPARE_SET(&hlptim1, lastpoll_count); // printf("ancsync_time: %u \r\n ",ancsync_time); // printf("current_slottimes: %u ",current_slottimes); // printf("nextpoll_delaytime: %u ",nextpoll_delaytime); // printf("current_count: %u ",current_count); // printf("lastpoll_count: %u",lastpoll_count); tag_succ_times++; memcpy(&anc_id_recv,&rx_buffer[ANCHOR_ID_IDX],2); // g_Tagdist[anc_id_recv]= hex_dist; // g_flag_Taggetdist[anc_id_recv]=0; if(!g_com_map[MODBUS_MODE]) { usart_send[2] = 1;//Õý³£Ä£Ê½ usart_send[3] = 17;//Êý¾Ý¶Î³¤¶È usart_send[4] = frame_seq_nb;//Êý¾Ý¶Î³¤¶È memcpy(&usart_send[5],&dev_id,2); memcpy(&usart_send[7],&rx_buffer[ANCHOR_ID_IDX],2); memcpy(&usart_send[9],&hex_dist2,4); usart_send[13] = battary; usart_send[14] = button; checksum = Checksum_u16(&usart_send[2],17); memcpy(&usart_send[19],&checksum,2); // UART_PushFrame(usart_send,21); } // memcpy(&Modbus_HoldReg[anc_id_recv*2],&hex_dist,4); /* Poll DW1000 until TX frame sent event set. See NOTE 8 below. */ if(result==0) {while (!(dwt_read32bitreg(SYS_STATUS_ID) & SYS_STATUS_TXFRS))//²»¶Ï²éѯоƬ״ֱ̬µ½·¢ËÍÍê³É { }; } /* Clear TXFRS event. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_TXFRS);//Çå³ý±ê־λ /* Increment frame sequence number after transmission of the final message (modulo 256). */ random_delay_tim = 0; } else { random_delay_tim = DFT_RAND_DLY_TIM_MS; //Èç¹ûͨѶʧ°Ü£¬½«¼ä¸ôʱ¼äÔö¼Ó5ms£¬±Ü¿ªÒòΪ¶à±êǩͬʱ·¢ËÍÒýÆðµÄ³åÍ»¡£ } } else { /* Clear RX error events in the DW1000 status register. */ dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); random_delay_tim = DFT_RAND_DLY_TIM_MS; } // deca_sleep(10); } dwt_entersleep(); // if(tag_succ_times