/*! ---------------------------------------------------------------------------- * @file deca_device_api.h * @brief DW1000 API Functions * * @attention * * Copyright 2013 (c) DecaWave Ltd, Dublin, Ireland. * * All rights reserved. * */ #ifndef _DECA_DEVICE_API_H_ #define _DECA_DEVICE_API_H_ #include #ifdef __cplusplus extern "C" { #endif #define DWT_SUCCESS (0) #define DWT_ERROR (-1) #define DWT_TIME_UNITS (1.0/499.2e6/128.0) //!< = 15.65e-12 s #define DWT_DEVICE_ID (0xDECA0130) //!< DW1000 MP device ID //! constants for selecting the bit rate for data TX (and RX) //! These are defined for write (with just a shift) the TX_FCTRL register #define DWT_BR_110K 0 //!< UWB bit rate 110 kbits/s #define DWT_BR_850K 1 //!< UWB bit rate 850 kbits/s #define DWT_BR_6M8 2 //!< UWB bit rate 6.8 Mbits/s //! constants for specifying the (Nominal) mean Pulse Repetition Frequency //! These are defined for direct write (with a shift if necessary) to CHAN_CTRL and TX_FCTRL regs #define DWT_PRF_16M 1 //!< UWB PRF 16 MHz #define DWT_PRF_64M 2 //!< UWB PRF 64 MHz //! constants for specifying Preamble Acquisition Chunk (PAC) Size in symbols #define DWT_PAC8 0 //!< PAC 8 (recommended for RX of preamble length 128 and below #define DWT_PAC16 1 //!< PAC 16 (recommended for RX of preamble length 256 #define DWT_PAC32 2 //!< PAC 32 (recommended for RX of preamble length 512 #define DWT_PAC64 3 //!< PAC 64 (recommended for RX of preamble length 1024 and up //! constants for specifying TX Preamble length in symbols //! These are defined to allow them be directly written into byte 2 of the TX_FCTRL register //! (i.e. a four bit value destined for bits 20..18 but shifted left by 2 for byte alignment) #define DWT_PLEN_4096 0x0C //! Standard preamble length 4096 symbols #define DWT_PLEN_2048 0x28 //! Non-standard preamble length 2048 symbols #define DWT_PLEN_1536 0x18 //! Non-standard preamble length 1536 symbols #define DWT_PLEN_1024 0x08 //! Standard preamble length 1024 symbols #define DWT_PLEN_512 0x34 //! Non-standard preamble length 512 symbols #define DWT_PLEN_256 0x24 //! Non-standard preamble length 256 symbols #define DWT_PLEN_128 0x14 //! Non-standard preamble length 128 symbols #define DWT_PLEN_64 0x04 //! Standard preamble length 64 symbols //! callback events #define DWT_SIG_RX_NOERR 0 #define DWT_SIG_TX_DONE 1 // Frame has been sent #define DWT_SIG_RX_OKAY 2 // Frame Received with Good CRC #define DWT_SIG_RX_ERROR 3 // Frame Received but CRC is wrong #define DWT_SIG_RX_TIMEOUT 4 // Timeout on receive has elapsed #define DWT_SIG_TX_AA_DONE 6 // ACK frame has been sent (as a result of auto-ACK) #define DWT_SIG_RX_PHR_ERROR 8 // Error found in PHY Header #define DWT_SIG_RX_SYNCLOSS 9 // Un-recoverable error in Reed Solomon Decoder #define DWT_SIG_RX_SFDTIMEOUT 10 // Saw preamble but got no SFD within configured time #define DWT_SIG_RX_PTOTIMEOUT 11 // Got preamble detection timeout (no preamble detected) #define DWT_SIG_TX_PENDING 12 // Delayed TX is pending #define DWT_SIG_TX_ERROR 13 // TX failed #define DWT_SIG_RX_PENDING 14 // RX has been re-enabled #define DWT_SFDTOC_DEF 0x1041 // default SFD timeout value #define DWT_PHRMODE_STD 0x0 // standard PHR mode #define DWT_PHRMODE_EXT 0x3 // DW proprietary extended frames PHR mode // Defined constants for "mode" bitmask parameter passed into dwt_starttx() function. #define DWT_START_TX_IMMEDIATE 0 #define DWT_START_TX_DELAYED 1 #define DWT_RESPONSE_EXPECTED 2 //frame filtering configuration options #define DWT_FF_NOTYPE_EN 0x000 // no frame types allowed (FF disabled) #define DWT_FF_COORD_EN 0x002 // behave as coordinator (can receive frames with no dest address (PAN ID has to match)) #define DWT_FF_BEACON_EN 0x004 // beacon frames allowed #define DWT_FF_DATA_EN 0x008 // data frames allowed #define DWT_FF_ACK_EN 0x010 // ack frames allowed #define DWT_FF_MAC_EN 0x020 // mac control frames allowed #define DWT_FF_RSVD_EN 0x040 // reserved frame types allowed //DW1000 interrupt events #define DWT_INT_TFRS 0x00000080 // frame sent #define DWT_INT_LDED 0x00000400 // micro-code has finished execution #define DWT_INT_RFCG 0x00004000 // frame received with good CRC #define DWT_INT_RPHE 0x00001000 // receiver PHY header error #define DWT_INT_RFCE 0x00008000 // receiver CRC error #define DWT_INT_RFSL 0x00010000 // receiver sync loss error #define DWT_INT_RFTO 0x00020000 // frame wait timeout #define DWT_INT_RXOVRR 0x00100000 // receiver overrun #define DWT_INT_RXPTO 0x00200000 // preamble detect timeout #define DWT_INT_SFDT 0x04000000 // SFD timeout #define DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration) //DW1000 SLEEP and WAKEUP configuration parameters #define DWT_PRESRV_SLEEP 0x0100 // PRES_SLEEP - on wakeup preserve sleep bit #define DWT_LOADOPSET 0x0080 // ONW_L64P - on wakeup load operating parameter set for 64 PSR #define DWT_CONFIG 0x0040 // ONW_LDC - on wakeup restore (load) the saved configurations (from AON array into HIF) #define DWT_TANDV 0x0001 // ONW_RADC - on wakeup run ADC to sample temperature and voltage sensor values #define DWT_XTAL_EN 0x10 // keep XTAL running during sleep #define DWT_WAKE_SLPCNT 0x8 // wake up after sleep count #define DWT_WAKE_CS 0x4 // wake up on chip select #define DWT_WAKE_WK 0x2 // wake up on WAKEUP PIN #define DWT_SLP_EN 0x1 // enable sleep/deep sleep functionality //DW1000 INIT configuration parameters #define DWT_LOADUCODE 0x1 #define DWT_LOADNONE 0x0 //DW1000 OTP operating parameter set selection #define DWT_OPSET_64LEN 0x0 #define DWT_OPSET_TIGHT 0x1 #define DWT_OPSET_DEFLT 0x2 typedef struct { uint32_t status; //initial value of register as ISR is entered uint8_t event; //event type uint8_t aatset; //auto ACK TX bit is set uint16_t datalength; //length of frame uint8_t fctrl[2]; //frame control bytes uint8_t dblbuff ; //set if double buffer is enabled } dwt_callback_data_t; typedef enum { CHAN_CTRL_TXCHAN_1 = 0x01, /* Selects the transmit channel 1 */ CHAN_CTRL_TXCHAN_2 = 0x02, /* Selects the transmit channel 2 */ CHAN_CTRL_TXCHAN_3 = 0x03, /* Selects the transmit channel 3 */ CHAN_CTRL_TXCHAN_4 = 0x04, /* Selects the transmit channel 4 */ CHAN_CTRL_TXCHAN_5 = 0x05, /* Selects the transmit channel 5 */ CHAN_CTRL_TXCHAN_7 = 0x07 /* Selects the transmit channel 7 */ } eCHAN; int32_t dwt_readcarrierintegrator(void); /*! ------------------------------------------------------------------------------------------------------------------ * Structure typedef: dwt_config_t * * Structure for setting device configuration via dwt_configure() function * */ #pragma pack(1) typedef struct { uint8_t chan ; //!< channel number {1, 2, 3, 4, 5, 7 } uint8_t prf ; //!< Pulse Repetition Frequency {DWT_PRF_16M or DWT_PRF_64M} uint8_t txPreambLength ; //!< DWT_PLEN_64..DWT_PLEN_4096 uint8_t rxPAC ; //!< Acquisition Chunk Size (Relates to RX preamble length) uint8_t txCode ; //!< TX preamble code uint8_t rxCode ; //!< RX preamble code uint8_t nsSFD ; //!< Boolean should we use non-standard SFD for better performance uint8_t dataRate ; //!< Data Rate {DWT_BR_110K, DWT_BR_850K or DWT_BR_6M8} uint8_t phrMode ; //!< PHR mode {0x0 - standard DWT_PHRMODE_STD, 0x3 - extended frames DWT_PHRMODE_EXT} uint16_t sfdTO ; //!< SFD timeout value (in symbols) } __attribute__ ((packed)) dwt_config_t ; #pragma pack() typedef struct { uint8_t PGdly; //TX POWER //31:24 BOOST_0.125ms_PWR //23:16 BOOST_0.25ms_PWR-TX_SHR_PWR //15:8 BOOST_0.5ms_PWR-TX_PHR_PWR //7:0 DEFAULT_PWR-TX_DATA_PWR uint32_t power; } dwt_txconfig_t ; typedef struct { uint16_t maxNoise ; // LDE max value of noise uint16_t firstPathAmp1 ; // Amplitude at floor(index FP) + 1 uint16_t stdNoise ; // Standard deviation of noise uint16_t firstPathAmp2 ; // Amplitude at floor(index FP) + 2 uint16_t firstPathAmp3 ; // Amplitude at floor(index FP) + 3 uint16_t maxGrowthCIR ; // Channel Impulse Response max growth CIR uint16_t rxPreamCount ; // Count of preamble symbols accumulated //uint32_t debug1; //uint32_t debug2; uint16_t firstPath ; // First path index (10.6 bits fixed point integer) } dwt_rxdiag_t ; typedef struct { //all of the below are mapped to a 12-bit register in DW1000 uint16_t PHE ; //number of received header errors uint16_t RSL ; //number of received frame sync loss events uint16_t CRCG ; //number of good CRC received frames uint16_t CRCB ; //number of bad CRC (CRC error) received frames uint16_t ARFE ; //number of address filter errors uint16_t OVER ; //number of receiver overflows (used in double buffer mode) uint16_t SFDTO ; //SFD timeouts uint16_t PTO ; //Preamble timeouts uint16_t RTO ; //RX frame wait timeouts uint16_t TXF ; //number of transmitted frames uint16_t HPW ; //half period warn uint16_t TXW ; //power up warn } dwt_deviceentcnts_t ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_getpartid() * * @brief This is used to return the read part ID of the device * * input parameters * * output parameters * * returns the 32 bit part ID value as programmed in the factory */ uint32_t dwt_getpartid(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_getlotid() * * @brief This is used to return the read lot ID of the device * * input parameters * * output parameters * * returns the 32 bit lot ID value as programmed in the factory */ uint32_t dwt_getlotid(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readdevid() * * @brief This is used to return the read device type and revision information of the DW1000 device (MP part is 0xDECA0130) * * input parameters * * output parameters * * returns the read value which for DW1000 is 0xDECA0130 */ uint32_t dwt_readdevid(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_otprevision() * * @brief This is used to return the read OTP revision * * input parameters * * output parameters * * returns the read OTP revision value */ uint8_t dwt_otprevision(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setGPIOforEXTTRX() * * @brief This is used to enable GPIO for external LNA or PA functionality - HW dependent, consult the DW1000 User Manual * * input parameters * * output parameters * * no return value */ void dwt_setGPIOforEXTTRX(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setGPIOdirection() * * @brief This is used to set GPIO direction as an input (1) or output (0) * * input parameters * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file * @param direction - this sets the GPIO direction - see GxP0... GxP8 in the deca_regs.h file * * output parameters * * no return value */ void dwt_setGPIOdirection(uint32_t gpioNum, uint32_t direction); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setGPIOvalue() * * @brief This is used to set GPIO value as (1) or (0) only applies if the GPIO is configured as output * * input parameters * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file * @param value - this sets the GPIO value - see GDP0... GDP8 in the deca_regs.h file * * output parameters * * no return value */ void dwt_setGPIOvalue(uint32_t gpioNum, uint32_t value); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_initialise() * * @brief This function initiates communications with the DW1000 transceiver * and reads its DEV_ID register (address 0x00) to verify the IC is one supported * by this software (e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it * does any initial once only device configurations needed for use and initialises * as necessary any static data items belonging to this low-level driver. * * NOTES: * 1.this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz * 2.it also reads and applies LDO tune and crystal trim values from OTP memory * * input parameters * @param config - specifies what configuration to load * DWT_LOADUCODE 0x1 - load the LDE microcode from ROM - enabled accurate RX timestamp * DWT_LOADNONE 0x0 - do not load any values from OTP memory * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_initialise(uint16_t config) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configure() * * @brief This function provides the main API for the configuration of the * DW1000 and this low-level driver. The input is a pointer to the data structure * of type dwt_config_t that holds all the configurable items. * The dwt_config_t structure shows which ones are supported * * input parameters * @param config - pointer to the configuration structure, which contains the device configuration data. * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_configure(dwt_config_t *config) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configuretxrf() * * @brief This function provides the API for the configuration of the TX spectrum * including the power and pulse generator delay. The input is a pointer to the data structure * of type dwt_txconfig_t that holds all the configurable items. * * input parameters * @param config - pointer to the txrf configuration structure, which contains the tx rf config data * * output parameters * * no return value */ void dwt_configuretxrf(dwt_txconfig_t *config) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setrxantennadelay() * * @brief This API function writes the antenna delay (in time units) to RX registers * * input parameters: * @param rxDelay - this is the total (RX) antenna delay value, which * will be programmed into the RX register * * output parameters * * no return value */ void dwt_setrxantennadelay(uint16_t antennaDly); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_settxantennadelay() * * @brief This API function writes the antenna delay (in time units) to TX registers * * input parameters: * @param txDelay - this is the total (TX) antenna delay value, which * will be programmed into the TX delay register * * output parameters * * no return value */ void dwt_settxantennadelay(uint16_t antennaDly); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setsmarttxpower() * * @brief This call enables or disables the smart TX power feature. * * input parameters * @param enable - this enables or disables the TX smart power (1 = enable, 0 = disable) * * output parameters * * no return value */ void dwt_setsmarttxpower(int enable); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_writetxdata() * * @brief This API function writes the supplied TX data into the DW1000's * TX buffer. The input parameters are the data length in bytes and a pointer * to those data bytes. * * input parameters * @param txFrameLength - This is the total frame length, including the two byte CRC. * Note: this is the length of TX message (including the 2 byte CRC) - max is 1023 * standard PHR mode allows up to 127 bytes * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration * see dwt_configure function * @param txFrameBytes - Pointer to the user’s buffer containing the data to send. * @param txBufferOffset - This specifies an offset in the DW1000’s TX Buffer at which to start writing data. * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_writetxdata(uint16_t txFrameLength, uint8_t *txFrameBytes, uint16_t txBufferOffset) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_writetxfctrl() * * @brief This API function configures the TX frame control register before the transmission of a frame * * input parameters: * @param txFrameLength - this is the length of TX message (including the 2 byte CRC) - max is 1023 * NOTE: standard PHR mode allows up to 127 bytes * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration * see dwt_configure function * @param txBufferOffset - the offset in the tx buffer to start writing the data * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_writetxfctrl(uint16_t txFrameLength, uint16_t txBufferOffset) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_starttx() * * @brief This call initiates the transmission, input parameter indicates which TX mode is used see below * * input parameters: * @param mode - if 0 immediate TX (no response expected) * if 1 delayed TX (no response expected) * if 2 immediate TX (response expected - so the receiver will be automatically turned on after TX is done) * if 3 delayed TX (response expected - so the receiver will be automatically turned on after TX is done) * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed transmission will fail if the delayed time has passed) */ int dwt_starttx(uint8_t mode) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setdelayedtrxtime() * * @brief This API function configures the delayed transmit time or the delayed RX on time * * input parameters * @param starttime - the TX/RX start time (the 32 bits should be the high 32 bits of the system time at which to send the message, * or at which to turn on the receiver) * * output parameters none * * no return value */ void dwt_setdelayedtrxtime(uint32_t starttime) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtxtimestamp() * * @brief This is used to read the TX timestamp (adjusted with the programmed antenna delay) * * input parameters * @param timestamp - a pointer to a 5-byte buffer which will store the read TX timestamp time * * output parameters - the timestamp buffer will contain the value after the function call * * no return value */ void dwt_readtxtimestamp(uint8_t *timestamp); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtxtimestamphi32() * * @brief This is used to read the high 32-bits of the TX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns high 32-bits of TX timestamp */ uint32_t dwt_readtxtimestamphi32(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtxtimestamplo32() * * @brief This is used to read the low 32-bits of the TX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns low 32-bits of TX timestamp */ uint32_t dwt_readtxtimestamplo32(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxtimestamp() * * @brief This is used to read the RX timestamp (adjusted time of arrival) * * input parameters * @param timestamp - a pointer to a 5-byte buffer which will store the read RX timestamp time * * output parameters - the timestamp buffer will contain the value after the function call * * no return value */ void dwt_readrxtimestamp(uint8_t *timestamp); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxtimestamphi32() * * @brief This is used to read the high 32-bits of the RX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns high 32-bits of RX timestamp */ uint32_t dwt_readrxtimestamphi32(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxtimestamplo32() * * @brief This is used to read the low 32-bits of the RX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns low 32-bits of RX timestamp */ uint32_t dwt_readrxtimestamplo32(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readsystimestamphi32() * * @brief This is used to read the high 32-bits of the system time * * input parameters * * output parameters * * returns high 32-bits of system time timestamp */ uint32_t dwt_readsystimestamphi32(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readsystime() * * @brief This is used to read the system time * * input parameters * @param timestamp - a pointer to a 5-byte buffer which will store the read system time * * output parameters * @param timestamp - the timestamp buffer will contain the value after the function call * * no return value */ void dwt_readsystime(uint8_t *timestamp); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_checkoverrun() * * @brief This is used to check if the overrun condition is set in DW1000 * * input parameters * * output parameters * * returns 1 if the RXOVERR bit is set, else 0 */ int dwt_checkoverrun(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_forcetrxoff() * * @brief This is used to turn off the transceiver * * input parameters * * output parameters * * no return value */ void dwt_forcetrxoff(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_syncrxbufptrs() * * @brief this function synchronizes rx buffer pointers * need to make sure that the host/IC buffer pointers are aligned before starting RX * * input parameters: * * output parameters * * no return value */ void dwt_syncrxbufptrs(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_rxenable() * * @brief This call turns on the receiver, can be immediate or delayed. * The receiver will stay turned on, listening to any messages until * it either receives a good frame, an error (CRC, PHY header, Reed Solomon) or it times out (SFD, Preamble or Frame). * * input parameters * @param delayed - TRUE the receiver is turned on after some delay (as programmed with dwt_setdelayedtime()) * * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed receive enable will be too far in the future if delayed time has passed (if delayed time is > 8s from now)) */ int dwt_rxenable(int delayed) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setrxmode() * * @brief enable different RX modes, e.g.: * a) "snooze" mode, the receiver only listens periodically for preamble * b) the RX PPDM "sniff" mode - receiver cycles through ON/OFF periods * * input parameters: * @param mode - DWT_RX_NORMAL = 0x0 * DWT_RX_SNIFF = 0x1 enable the rx PPDM "sniff" mode * @param rxON - SNIFF mode ON period in PACs * @param rxOFF - SNIFF mode OFF period in us (actually in 1.0256 micro second intervals) * * output parameters * * no return value */ #define DWT_RX_NORMAL (0x0) #define DWT_RX_SNIFF (0x1) void dwt_setrxmode(int mode, uint8_t rxON, uint8_t rxOFF); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setautorxreenable() * * @brief This call enables the auto RX re-enable feature * * input parameters * @param enable - 1 to enable, 0 to disable the feature * * output parameters * * no return value */ void dwt_setautorxreenable(int enable); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setdblrxbuffmode() * * @brief This call enables the double receive buffer mode * * input parameters * @param enable - 1 to enable, 0 to disable the double buffer mode * * output parameters * * no return value */ void dwt_setdblrxbuffmode(int enable); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setrxtimeout() * * @brief This call enables RX timeout (SY_STAT_RFTO event) * * input parameters * @param time - how long the receiver remains on from the RX enable command * The time parameter used here is in 1.0256 us (512/499.2MHz) units * If set to 0 the timeout is disabled. * * output parameters * * no return value */ void dwt_setrxtimeout(uint16_t time); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setpreambledetecttimeout() * * @brief This call enables preamble timeout (SY_STAT_RXPTO event) * * input parameters * @param timeout - in PACs * * output parameters * * no return value */ void dwt_setpreambledetecttimeout(uint16_t timeout); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_calibratesleepcnt() * * @brief calibrates the local oscillator as its frequency can vary between 7 and 13kHz depending on temp and voltage * * NOTE: this function needs to be run before dwt_configuresleepcnt, so that we know what the counter units are * * input parameters * * output parameters * * returns the number of XTAL/2 cycles per low-power oscillator cycle. LP OSC frequency = 19.2 MHz/return value */ uint16_t dwt_calibratesleepcnt(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configuresleepcnt() * * @brief sets the sleep counter to new value, this function programs the high 16-bits of the 28-bit counter * * NOTE: this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz * * input parameters * @param sleepcnt - this it value of the sleep counter to program * * output parameters * * no return value */ void dwt_configuresleepcnt(uint16_t sleepcnt); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configuresleep() * * @brief configures the device for both DEEP_SLEEP and SLEEP modes, and on-wake mode * i.e. before entering the sleep, the device should be programmed for TX or RX, then upon "waking up" the TX/RX settings * will be preserved and the device can immediately perform the desired action TX/RX * * NOTE: e.g. Tag operation - after deep sleep, the device needs to just load the TX buffer and send the frame * * * mode: the array and LDE code (OTP/ROM) and LDO tune, and set sleep persist * DWT_PRESRV_SLEEP 0x0100 - preserve sleep * DWT_LOADOPSET 0x0080 - load operating parameter set on wakeup * DWT_CONFIG 0x0040 - download the AON array into the HIF (configuration download) * DWT_LOADEUI 0x0008 * DWT_GOTORX 0x0002 * DWT_TANDV 0x0001 * * wake: wake up parameters * DWT_XTAL_EN 0x10 - keep XTAL running during sleep * DWT_WAKE_SLPCNT 0x8 - wake up after sleep count * DWT_WAKE_CS 0x4 - wake up on chip select * DWT_WAKE_WK 0x2 - wake up on WAKEUP PIN * DWT_SLP_EN 0x1 - enable sleep/deep sleep functionality * * input parameters * @param mode - config on-wake parameters * @param wake - config wake up parameters * * output parameters * * no return value */ void dwt_configuresleep(uint16_t mode, uint8_t wake); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_entersleep() * * @brief This function puts the device into deep sleep or sleep. dwt_configuredeepsleep should be called first * to configure the sleep and on-wake/wake-up parameters * * input parameters * * output parameters * * no return value */ void dwt_entersleep(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_entersleepaftertx(int enable) * * @brief sets the auto TX to sleep bit. This means that after a frame * transmission the device will enter deep sleep mode. The dwt_setdeepsleep() function * needs to be called before this to configure the on-wake settings * * NOTE: the IRQ line has to be low/inactive (i.e. no pending events) * * input parameters * @param enable - 1 to configure the device to enter deep sleep after TX, 0 - disables the configuration * * output parameters * * no return value */ void dwt_entersleepaftertx(int enable); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_spicswakeup() * * @brief wake up the device from sleep mode using the SPI read, * the device will wake up on chip select line going low if the line is held low for at least 500us. * To define the length depending on the time one wants to hold * the chip select line low, use the following formula: * * length (bytes) = time (s) * byte_rate (Hz) * * where fastest byte_rate is spi_rate (Hz) / 8 if the SPI is sending the bytes back-to-back. * To save time and power, a system designer could determine byte_rate value more precisely. * * NOTE: Alternatively the device can be waken up with WAKE_UP pin if configured for that operation * * input parameters * @param buff - this is a pointer to the dummy buffer which will be used in the SPI read transaction used for the WAKE UP of the device * @param length - this is the length of the dummy buffer * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_spicswakeup(uint8_t *buff, uint16_t length); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setcallbacks() * * @brief This is the devices interrupt handler function, it will process/report status events * * input parameters * @param txcallback - the pointer to the TX call-back function * @param rxcallback - the pointer to the RX call-back function * * output parameters * * no return value */ void dwt_setcallbacks(void (*txcallback)(const dwt_callback_data_t *), void (*rxcallback)(const dwt_callback_data_t *)); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_checkIRQ() * * @brief This function checks if the IRQ line is active - this is used instead of interrupt handler * * input parameters * * output parameters * * return value is 1 if the IRQS bit is set and 0 otherwise */ uint8_t dwt_checkIRQ(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_isr() * * @brief This is the devices interrupt handler function, it will process/report status events * Notes: In PC based system using (Cheetah or ARM) USB to SPI converter there can be no interrupts, however we still need something * to take the place of it and operate in a polled way. * In an embedded system this function should be configured to launch on an interrupt, then it will process the interrupt trigger event and * call a TX or RX call-back function depending on whether the event is a TX or RX event. * The TX call-back will be called when a frame has been sent and the RX call-back when a frame has been received. * * input parameters * * output parameters * * no return value */ void dwt_isr(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn void dwt_setinterrupt() * * @brief This function enables the specified events to trigger an interrupt. * The following events can be enabled: * DWT_INT_TFRS 0x00000080 // frame sent * DWT_INT_RFCG 0x00004000 // frame received with good CRC * DWT_INT_RPHE 0x00001000 // receiver PHY header error * DWT_INT_RFCE 0x00008000 // receiver CRC error * DWT_INT_RFSL 0x00010000 // receiver sync loss error * DWT_INT_RFTO 0x00020000 // frame wait timeout * DWT_INT_RXPTO 0x00200000 // preamble detect timeout * DWT_INT_SFDT 0x04000000 // SFD timeout * DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration) * * * input parameters: * @param bitmask - sets the events which will generate interrupt * @param enable - if set the interrupts are enabled else they are cleared * * output parameters * * no return value */ void dwt_setinterrupt( uint32_t bitmask, uint8_t enable); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setpanid() * * @brief This is used to set the PAN ID * * input parameters * @param panID - this is the PAN ID * * output parameters * * no return value */ void dwt_setpanid(uint16_t panID); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setaddress16() * * @brief This is used to set 16-bit (short) address * * input parameters * @param shortAddress - this sets the 16 bit short address * * output parameters * * no return value */ void dwt_setaddress16(uint16_t shortAddress); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_seteui() * * @brief This is used to set the EUI 64-bit (long) address * * input parameters * @param eui64 - this is the pointer to a buffer that contains the 64bit address * * output parameters * * no return value */ void dwt_seteui(uint8_t *eui64); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_geteui() * * @brief This is used to get the EUI 64-bit from the DW1000 * * input parameters * @param eui64 - this is the pointer to a buffer that will contain the read 64-bit EUI value * * output parameters * * no return value */ void dwt_geteui(uint8_t *eui64); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_otpread() * * @brief This is used to read the OTP data from given address into provided array * * input parameters * @param address - this is the OTP address to read from * @param array - this is the pointer to the array into which to read the data * @param length - this is the number of 32 bit words to read (array needs to be at least this length) * * output parameters * * no return value */ void dwt_otpread(uint32_t address, uint32_t *array, uint8_t length); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_enableframefilter() * * @brief This is used to enable the frame filtering - (the default option is to * accept any data and ACK frames with correct destination address * * input parameters * @param - bitmask - enables/disables the frame filtering options according to * DWT_FF_NOTYPE_EN 0x000 no frame types allowed * DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no destination address (PAN ID has to match)) * DWT_FF_BEACON_EN 0x004 beacon frames allowed * DWT_FF_DATA_EN 0x008 data frames allowed * DWT_FF_ACK_EN 0x010 ack frames allowed * DWT_FF_MAC_EN 0x020 mac control frames allowed * DWT_FF_RSVD_EN 0x040 reserved frame types allowed * * output parameters * * no return value */ void dwt_enableframefilter(uint16_t bitmask); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_enableautoack() * * @brief This call enables the auto-ACK feature. If the responseDelayTime (parameter) is 0, the ACK will be sent a.s.a.p. * otherwise it will be sent with a programmed delay (in symbols), max is 255. * NOTE: needs to have frame filtering enabled as well * * input parameters * @param responseDelayTime - if non-zero the ACK is sent after this delay, max is 255. * * output parameters * * no return value */ void dwt_enableautoack(uint8_t responseDelayTime); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setrxaftertxdelay() * * @brief This sets the receiver turn on delay time after a transmission of a frame * * input parameters * @param rxDelayTime - (20 bits) - the delay is in UWB microseconds * * output parameters * * no return value */ void dwt_setrxaftertxdelay(uint32_t rxDelayTime); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_rxreset() * * @brief this function resets the receiver of the DW1000 * * input parameters: * * output parameters * * no return value */ void dwt_rxreset(void); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_softreset() * * @brief this function resets the DW1000 * * input parameters: * * output parameters * * no return value */ void dwt_softreset(void) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxdata() * * @brief This is used to read the data from the RX buffer, from an offset location give by offset parameter * * input parameters * @param buffer - the buffer into which the data will be read * @param length - the length of data to read (in bytes) * @param rxBufferOffset - the offset in the rx buffer from which to read the data * * output parameters * * no return value */ void dwt_readrxdata(uint8_t *buffer, uint16_t length, uint16_t rxBufferOffset); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readaccdata() * * @brief This is used to read the data from the Accumulator buffer, from an offset location give by offset parameter * * input parameters * @param buffer - the buffer into which the data will be read * @param length - the length of data to read (in bytes) * @param accOffset - the offset in the acc buffer from which to read the data * * output parameters * * no return value */ void dwt_readaccdata(uint8_t *buffer, uint16_t length, uint16_t rxBufferOffset); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readdiagnostics() * * @brief this function reads the RX signal quality diagnostic data * * input parameters * @param diagnostics - diagnostic structure pointer, this will contain the diagnostic data read from the DW1000 * * output parameters * * no return value */ void dwt_readdiagnostics(dwt_rxdiag_t *diagnostics); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_loadopsettabfromotp() * * @brief This is used to select which Operational Parameter Set table to load from OTP memory * * input parameters * @param - opset table selection * DWT_OPSET_64LEN = 0x0 - load the operational parameter set table for 64 length preamble configuration * DWT_OPSET_TIGHT = 0x1 - load the operational parameter set table for tight xtal offsets (<1ppm) * DWT_OPSET_DEFLT = 0x2 - load the default operational parameter set table (this is loaded from reset) * * output parameters * * no return value */ void dwt_loadopsettabfromotp(uint8_t gtab_sel); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configeventcounters() * * @brief This is used to enable/disable the event counter in the IC * * input parameters * @param - enable - 1 enables (and reset), 0 disables the event counters * output parameters * * no return value */ void dwt_configeventcounters(int enable); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readeventcounters() * * @brief This is used to read the event counters in the IC * * input parameters * @param counters - pointer to the dwt_deviceentcnts_t structure which will hold the read data * * output parameters * * no return value */ void dwt_readeventcounters(dwt_deviceentcnts_t *counters); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_otpwriteandverify() * * @brief This is used to program 32-bit value into the DW1000 OTP memory. * * input parameters * @param value - this is the 32-bit value to be programmed into OTP * @param address - this is the 16-bit OTP address into which the 32-bit value is programmed * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ uint32_t dwt_otpwriteandverify(uint32_t value, uint16_t address); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setleds() * * @brief This is used to set up Tx/Rx GPIOs which could be used to control LEDs * Note: not completely IC dependent, also needs board with LEDS fitted on right I/O lines * this function enables GPIOs 2 and 3 which are connected to LED3 and LED4 on EVB1000 * * input parameters * @param test - if 1 the LEDs will be enabled, if 0 the LED control is disabled. * - if value is 2 the LEDs will flash once after enable. * * output parameters * * no return value */ void dwt_setleds(uint8_t test); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_xtaltrim() * * @brief This is used adjust the crystal frequency * * input parameters: * @param value - crystal trim value (in range 0x0 to 0x1F) 31 steps (~1.5ppm per step) * * @output * * no return value */ void dwt_xtaltrim(uint8_t value); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configcwmode() * * @brief this function sets the DW1000 to transmit cw signal at specific channel frequency * * input parameters: * @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7) * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_configcwmode(uint8_t chan); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configcontinuousframemode() * * @brief this function sets the DW1000 to continuous tx frame mode for regulatory approvals testing. * * input parameters: * @param framerepetitionrate - This is a 32-bit value that is used to set the interval between transmissions. * The minimum value is 4. The units are approximately 8 ns. (or more precisely 512/(499.2e6*128) seconds)). * * output parameters * * no return value */ void dwt_configcontinuousframemode(uint32_t framerepetitionrate); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtempvbat() * * @brief this function reads the battery voltage and temperature of the MP * The values read here will be the current values sampled by DW1000 AtoD converters. * Note on Temperature: the temperature value needs to be converted to give the real temperature * the formula is: 1.13 * reading - 113.0 * Note on Voltage: the voltage value needs to be converted to give the real voltage * the formula is: 0.0057 * reading + 2.3 * * NB: To correctly read the temperature this read should be done with xtal clock * however that means that the receiver will be switched off, if receiver needs to be on then * the timer is used to make sure the value is stable before reading * * input parameters: * @param fastSPI - set to 1 if SPI rate > than 3MHz is used * * output parameters * * returns (temp_raw<<8)|(vbat_raw) */ uint16_t dwt_readtempvbat(uint8_t fastSPI); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readwakeuptemp() * * @brief this function reads the temperature of the DW1000 that was sampled * on waking from Sleep/Deepsleep. They are not current values, but read on last * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep * * input parameters: * * output parameters: * * returns: 8-bit raw temperature sensor value */ uint8_t dwt_readwakeuptemp(void) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readwakeupvbat() * * @brief this function reads the battery voltage of the DW1000 that was sampled * on waking from Sleep/Deepsleep. They are not current values, but read on last * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep * * input parameters: * * output parameters: * * returns: 8-bit raw battery voltage sensor value */ uint8_t dwt_readwakeupvbat(void) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_writetodevice() * * @brief this function is used to write to the DW1000 device registers * Notes: * 1. Firstly we create a header (the first byte is a header byte) * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte * b. set bit-7 (or with 0x80) for write operation * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte * * 2. Write the header followed by the data bytes to the DW1000 device * * * input parameters: * @param recordNumber - ID of register file or buffer being accessed * @param index - byte index into register file or buffer being accessed * @param length - number of bytes being written * @param buffer - pointer to buffer containing the 'length' bytes to be written * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_writetodevice // returns 0 for success, or, -1 for error. ( uint16_t recordNumber, // input parameter - ID of register file or buffer being accessed uint16_t index, // input parameter - byte index into register file or buffer being accessed uint32_t length, // input parameter - number of bytes being written uint8_t *buffer // input parameter - pointer to buffer containing the 'length' bytes to be written ) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readfromdevice() * * @brief this function is used to read from the DW1000 device registers * Notes: * 1. Firstly we create a header (the first byte is a header byte) * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte * b. set bit-7 (or with 0x80) for write operation * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte * * 2. Write the header followed by the data bytes to the DW1000 device * 3. Store the read data in the input buffer * * input parameters: * @param recordNumber - ID of register file or buffer being accessed * @param index - byte index into register file or buffer being accessed * @param length - number of bytes being read * @param buffer - pointer to buffer in which to return the read data. * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_readfromdevice // returns offset where requested data begins in supplied buffer, or, -1 for error. ( uint16_t recordNumber, // input parameter - ID of register file or buffer being accessed uint16_t index, // input parameter - byte index into register file or buffer being accessed uint32_t length, // input parameter - number of bytes being read uint8_t *buffer // input parameter - pointer to buffer in which to return the read data. ) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_read32bitoffsetreg() * * @brief this function is used to read 32-bit value from the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * * output parameters * * returns 32 bit register value (success), or DWT_ERROR for error */ uint32_t dwt_read32bitoffsetreg(int regFileID, int regOffset) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_write32bitoffsetreg() * * @brief this function is used to write 32-bit value to the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * @param regval - the value to write * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32_t regval); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_read16bitoffsetreg() * * @brief this function is used to read 16-bit value from the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * * output parameters * * returns 16 bit register value (success), or DWT_ERROR for error */ uint16_t dwt_read16bitoffsetreg(int regFileID, int regOffset); /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_write16bitoffsetreg() * * @brief this function is used to write 16-bit value to the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * @param regval - the value to write * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16_t regval) ; #define dwt_write32bitreg(x,y) dwt_write32bitoffsetreg(x,0,y) #define dwt_read32bitreg(x) dwt_read32bitoffsetreg(x,0) /*! ------------------------------------------------------------------------------------------------------------------ * @fn writetospi() * * @brief * NB: In porting this to a particular microprocessor, the implementer needs to define the two low * level abstract functions to write to and read from the SPI the definitions should be in deca_spi.c file. * Low level abstract function to write to the SPI * Takes two separate byte buffers for write header and write data * returns 0 for success, or -1 for error * * Note: The body of this function is defined in deca_spi.c and is platform specific * * input parameters: * @param headerLength - number of bytes header being written * @param headerBuffer - pointer to buffer containing the 'headerLength' bytes of header to be written * @param bodylength - number of bytes data being written * @param bodyBuffer - pointer to buffer containing the 'bodylength' bytes od data to be written * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ extern int writetospi // returns 0 for success, or, -1 for error. ( uint16_t headerLength, // input parameter - number of bytes header being written uint8_t *headerBuffer, // input parameter - pointer to buffer containing the 'headerLength' bytes of header to be written uint32_t bodylength, // input parameter - number of bytes data being written uint8_t *bodyBuffer // input parameter - pointer to buffer containing the 'bodylength' bytes od data to be written ) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn readfromspi() * * @brief * NB: In porting this to a particular microprocessor, the implementer needs to define the two low * level abstract functions to write to and read from the SPI the definitions should be in deca_spi.c file. * Low level abstract function to write to the SPI * Takes two separate byte buffers for write header and write data * returns 0 for success, or -1 for error * * Note: The body of this function is defined in deca_spi.c and is platform specific * * input parameters: * @param headerLength - number of bytes header to write * @param headerBuffer - pointer to buffer containing the 'headerLength' bytes of header to write * @param bodylength - number of bytes data being read * @param bodyBuffer - pointer to buffer containing to return the data (NB: size required = headerLength + readlength) * * output parameters * * returns DWT_SUCCESS for success (and the position in the buffer at which data begins), or DWT_ERROR for error */ extern int readfromspi // returns offset where requested data begins in supplied buffer, or, -1 for error. ( uint16_t headerLength, // input parameter - number of bytes header to write uint8_t *headerBuffer, // input parameter - pointer to buffer containing the 'headerLength' bytes of header to write uint32_t readlength, // input parameter - number of bytes data being read uint8_t *readBuffer // input parameter - pointer to buffer containing to return the data (NB: size required = headerLength + readlength) ) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_getrangebias() * * @brief This function is used to return the range bias correction need for TWR with DW1000 units. * * input parameters: * @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7) * @param range - the calculated distance before correction * @param prf - this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M * * output parameters * * returns correction needed in meters */ double dwt_getrangebias(uint8_t chan, float range, uint8_t prf); // --------------------------------------------------------------------------- // // NB: The purpose of the deca_mutex.c file is to provide for microprocessor interrupt enable/disable, this is used for // controlling mutual exclusion from critical sections in the code where interrupts and background // processing may interact. The code using this is kept to a minimum and the disabling time is also // kept to a minimum, so blanket interrupt disable may be the easiest way to provide this. But at a // minimum those interrupts coming from the decawave device should be disabled/re-enabled by this activity. // // In porting this to a particular microprocessor, the implementer may choose to use #defines here // to map these calls transparently to the target system. Alternatively the appropriate code may // be embedded in the functions provided in the deca_irq.c file. // // --------------------------------------------------------------------------- typedef int decaIrqStatus_t ; // Type for remembering IRQ status /*! ------------------------------------------------------------------------------------------------------------------ * @fn decamutexon() * * @brief This function should disable interrupts. This is called at the start of a critical section * It returns the IRQ state before disable, this value is used to re-enable in decamutexoff call * * Note: The body of this function is defined in deca_mutex.c and is platform specific * * input parameters: * * output parameters * * returns the state of the DW1000 interrupt */ decaIrqStatus_t decamutexon(void) ; /*! ------------------------------------------------------------------------------------------------------------------ * @fn decamutexoff() * * @brief This function should re-enable interrupts, or at least restore their state as returned(&saved) by decamutexon * This is called at the end of a critical section * * Note: The body of this function is defined in deca_mutex.c and is platform specific * * input parameters: * @param s - the state of the DW1000 interrupt as returned by decamutexon * * output parameters * * returns the state of the DW1000 interrupt */ void decamutexoff(decaIrqStatus_t s) ; #ifdef __cplusplus } #endif #endif /* _DECA_DEVICE_API_H_ */